(本小題滿分11分)已知:如圖,直線MN交⊙OA、B兩點,AC是直徑,AD平分∠CAM交⊙O于點D,過點DDEMN于點E

(1)求證:DE是⊙O的切線;

(2)若∠ADE=30°,⊙O的半徑為2,求圖中陰影部分的面積.(結果保留根號)

 

                       

 

 

 

 

 

 

 

 

(1)連結OD                                …………………………1分

OA=OD,∴∠OAD=∠ODA.

又∵AD平分∠CAM,∴∠OAD=∠DAE.

∴∠ODA=∠DAE.∴ODMN                      …………………………4分

DEMN

ODDE.

DE是⊙O的切線                               …………………………5分

(2)連結OB                                    …………………………6分

∵∠ADE=30°,∴∠DAE=∠OAD=60°.

∴∠BAO=60°.

OA=OB,

∴△OAB是等邊三角形                           …………………………8分

    …………………………11分

 

解析:略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本小題滿分11分)已知直線軸分別交于點A和點B,點B的坐標為(0,6)

(1)求的值和點A的坐標;

(2)在矩形OACB中,點P是線段BC上的一動點,直線PD⊥AB于點D,與軸交于點E,設BP=,梯形PEAC的面積為。

①求的函數(shù)關系式,并寫出的取值范圍;

②⊙Q是OAB的內(nèi)切圓,求當PE與⊙Q相交的弦長為2.4時點P的坐標。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本小題滿分11分)已知直線軸分別交于點A和點B,點B的坐標為(0,6)

(1)求的值和點A的坐標;
(2)在矩形OACB中,點P是線段BC上的一動點,直線PD⊥AB于點D,與軸交于點E,設BP=,梯形PEAC的面積為。
①求的函數(shù)關系式,并寫出的取值范圍;
②⊙Q是OAB的內(nèi)切圓,求當PE與⊙Q相交的弦長為2.4時點P的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本小題滿分11分)
如圖,已知等邊三角形ABC中,點D,E,F(xiàn)分別為邊AB,AC,BC的中點,M為直線
BC上一動點,△DMN為等邊三角形(點M的位置改變時,△DMN也隨之整體移動).
(1)如圖①,當點M在點B左側時,請你判斷EN與MF有怎樣的數(shù)量關系?點F與直線EN有怎樣的位置關系?都請直接寫出結論,不必證明或說明理由;
(2)如圖②,當點M在BC上時,其它條件不變,(1)的結論中EN與MF的數(shù)量關系是否仍然成立?若成立,請利用圖②證明;若不成立,請說明理由;
(3)若點M在點C右側時,請你在圖③中畫出相應的圖形,并判斷(1)的結論中EN與MF的數(shù)量關系及點F與直線EN的位置關系是否仍然成立?若成立?請直接寫出結論,不必證明或說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(福建泉州卷)數(shù)學 題型:解答題

(本小題滿分11分)
如圖,已知等邊三角形ABC中,點D,E,F(xiàn)分別為邊AB,AC,BC的中點,M為直線
BC上一動點,△DMN為等邊三角形(點M的位置改變時,△DMN也隨之整體移動).
(1)如圖①,當點M在點B左側時,請你判斷EN與MF有怎樣的數(shù)量關系?點F與直線EN有怎樣的位置關系?都請直接寫出結論,不必證明或說明理由;
(2)如圖②,當點M在BC上時,其它條件不變,(1)的結論中EN與MF的數(shù)量關系是否仍然成立?若成立,請利用圖②證明;若不成立,請說明理由;
(3)若點M在點C右側時,請你在圖③中畫出相應的圖形,并判斷(1)的結論中EN與MF的數(shù)量關系及點F與直線EN的位置關系是否仍然成立?若成立?請直接寫出結論,不必證明或說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年廣東省梅州中學九年級下學期3月月考數(shù)學卷 題型:解答題

(本小題滿分11分)已知直線軸分別交于點A和點B,點B的坐標為(0,6)

(1)求的值和點A的坐標;
(2)在矩形OACB中,點P是線段BC上的一動點,直線PD⊥AB于點D,與軸交于點E,設BP=,梯形PEAC的面積為。
①求的函數(shù)關系式,并寫出的取值范圍;
②⊙Q是OAB的內(nèi)切圓,求當PE與⊙Q相交的弦長為2.4時點P的坐標。

查看答案和解析>>

同步練習冊答案