【題目】“食品安全”受到全社會的廣泛關注,武漢市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學生共有 人,扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角為 ;
(2)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,恰好抽到1個男生和1個女生的概率為 ;
(3)若該中學共有學生900人,請根據(jù)上述調(diào)查結果,估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數(shù).
【答案】(1)60;30°;(2);(3)估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數(shù)為300人
【解析】
(1)用“了解很少”部分的人數(shù)除以它所占的百分比可得到調(diào)查的總人數(shù);然后用“了解”部分所占的百分比乘以360°得到扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角的度數(shù);
(2)畫樹狀圖為(分別用A、B表示兩名女生,用C、D表示兩名男生)展示所有12種等可能的結果數(shù),再找出恰好抽到1個男生和1個女生的結果數(shù),然后根據(jù)概率公式求解;
(3)利用樣本估計總體,用900乘以“了解”和“基本了解”所占的百分比的和即可.
(1)30÷50%=60(人),
所以接受問卷調(diào)查的學生共有60人;
扇形統(tǒng)計圖中“了解”部分所對應扇形的圓心角的度數(shù)為×360°=30°;
故答案為60;30°;
(2)畫樹狀圖為:(分別用A、B表示兩名女生,用C、D表示兩名男生)
共有12種等可能的結果數(shù),其中恰好抽到1個男生和1個女生的結果數(shù)為8,
所以恰好抽到1個男生和1個女生的概率==.
故答案為:.
(3)900×=300(人),
所以估計該中學學生中對食品安全知識達到“了解”和“基本了解”程度的總人數(shù)為300人;
科目:初中數(shù)學 來源: 題型:
【題目】周末,小明與小亮兩個人打算騎共享單車騎行出游,兩人打開手機APP進行選擇,已知附近共有3種品牌的5輛車,其中A品牌與B品牌各有2輛,C品牌有1輛,手機上無法識別品牌,且有人選中車后其他人無法再選.
(1)若小明首先選擇,則小明選中A品牌單車的概率為 ;
(2)求小明和小亮選中同一品牌單車的概率.(請用“畫樹狀圖”或“列表”的方法給出分析過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線交軸于,兩點,交軸于點.直線經(jīng)過點,.
(1)求拋物線的解析式;
(2)過點的直線交直線于點.
①當時,過拋物線上一動點(不與點,重合),作直線的平行線交直線于點,若以點,,,為頂點的四邊形是平行四邊形,求點的橫坐標;
②連接,當直線與直線的夾角等于的倍時,請直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校隨機抽查了部分九年級女生進行1分鐘仰臥起坐測試,并將測試的結果繪制成了如圖的不完整的統(tǒng)計表和頻數(shù)分布直方圖(注:在頻數(shù)分布直方圖中,每組含左端點,但不含右端點):
仰臥起坐次數(shù)的范圍(次) | 15~20 | 20~25 | 25~30 | 30~35 |
頻數(shù) | 3 | 10 | 12 |
|
頻率 |
|
(1)30~35的頻數(shù)是 、25~30的頻率是 .并把統(tǒng)計圖補充完整;
(2)被抽查的所有女同學仰臥起坐次數(shù)的中位數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點是反比例函數(shù)圖像上的一個動點,連接,若將線段繞點逆時針旋轉得到線段,則過點的反比例函數(shù)解析式為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于、兩點,點的坐標為.
(1)求點坐標;
(2)若對于每一個給定的的值,它所對應的函數(shù)值都不小于,求的取值范圍.
(3)直線經(jīng)過點.
①求直線和拋物線的解析式;
②設拋物線與軸的交點為,過點作直線軸,將拋物線在軸左側的部分沿直線翻折,拋物線的其余部分保持不變,得到一個新圖像,請你結合新圖像回答:
當直線與新圖像只有一個公共點且時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y1=ax+b(a,b為常數(shù),且a≠0)與反比例函數(shù)y2=(m為常數(shù),且n≠0)的圖象交于點A(﹣3,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結0A、OB,求△AOB的面積;
(3)直接寫出當y1<y2<0時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在標有平行四邊形、矩形、菱形、正方形、等腰梯形、直角梯形的六張形狀、大小完全相等的紙片中,連續(xù)抽取其中兩張紙片,被抽中的(所對應的圖形)恰好是軸對稱的概率是___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com