25、已知:如圖1,在邊長為5的正方形ABCD中,點E、F分別是BC、DC邊上的點,且AE⊥EF,BE=2.
(1)求EC:CF的值;
(2)延長EF交正方形外角平分線CP于點P(圖2),試判斷AE與EP的大小關系,并說明理由.
分析:(1)由正方形的性質可得:∠B=∠C=90°,由同角的余角相等,可證得:∠1=∠2,即可證得:△ABE∽△EFC,又由相似三角形的對應邊成比例,即可求得EC:CF的值;
(2)首先作輔助線:在AB上取一點M,使AM=EC,連接ME,利用ASA,易證得:△AME≌△PCE,則可證得:AE=EP.
解答:解:(1)∵AE⊥EF,
∴∠2+∠3=90°,
∵四邊形ABCD為正方形,
∴∠B=∠C=90°,
∴∠1+∠3=90°,∠1=∠2,
∴△ABE∽△ECF,
∴EC:CF=AB:BE=5:2;

(2)在AB上取一點M,使BM=BE,連接ME.
∴AM=CE.
∴∠BME=45°,
∴∠AME=135°.
∵CP是外角平分線,
∴∠DCP=45°,
∴∠ECP=135°.
∴∠AME=∠ECP.
∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,
∴∠BAE=∠CEF.
∴△AME≌△PCE(ASA).
∴AE=EP.
點評:此題考查了相似三角形的判定與性質,全等三角形的判定與性質以及正方形的性質等知識.此題綜合性很強,圖形比較復雜,解題的關鍵是注意數(shù)形結合思想的應用與輔助線的準確選擇.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

本題為選項做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計分.
精英家教網(wǎng)
甲:直線l:y=(m-3)x+n-2(m,n為常數(shù))的圖象如圖1所示,化簡:|m-n|-
n24n+4
-|m-1|
;
乙:已知:如圖2,在邊長為a的正方形ABCD中,M是邊AD的中點,能否在邊AB上找到點N(不含A、B),使得△MAN相似?若能,請給出證明;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中數(shù)學單元提優(yōu)測試卷-相似的判定(帶解析) 題型:解答題

本題為選項做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計分.

甲:直線l:y=(m﹣3)x+n﹣2(m,n為常數(shù))的圖象如圖1所示,化簡:|m﹣n|﹣;
乙:已知:如圖2,在邊長為a的正方形ABCD中,M是邊AD的中點,能否在邊AB上找到點N(不含A、B),使得△MAN相似?若能,請給出證明;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中數(shù)學單元提優(yōu)測試卷-相似的判定(解析版) 題型:解答題

本題為選項做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計分.

甲:直線l:y=(m﹣3)x+n﹣2(m,n為常數(shù))的圖象如圖1所示,化簡:|m﹣n|﹣;

乙:已知:如圖2,在邊長為a的正方形ABCD中,M是邊AD的中點,能否在邊AB上找到點N(不含A、B),使得△MAN相似?若能,請給出證明;若不能,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學 來源:第24章《相似形》中考題集(06):24.2 相似三角形的判定(解析版) 題型:解答題

本題為選項做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計分.

甲:直線l:y=(m-3)x+n-2(m,n為常數(shù))的圖象如圖1所示,化簡:|m-n|-;
乙:已知:如圖2,在邊長為a的正方形ABCD中,M是邊AD的中點,能否在邊AB上找到點N(不含A、B),使得△MAN相似?若能,請給出證明;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案