【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC,則下列結(jié)論:①abc<0;②;③ac﹣b+1=0;④OAOB=﹣.其中正確結(jié)論的序號是_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,P為AD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應(yīng)點為點E),PE與CD相交于點O,且OE=OD.
(1)求證:PE=DH;
(2)若AB=10,BC=8,求DP的長.
【答案】(1)見解析;(2).
【解析】試題分析:(1) 先證明△DOP≌△EOH,再利用等量代換得到PE=DH.
(2) 設(shè)DP=x, Rt△BCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.
試題解析:
(1)解:證明:∵OD=OE,∠D=∠E=90°,∠DOP=∠EOH,
∴△DOP≌△EOH,
∴OP=OH,
∴PO+OE=OH+OD,
∴PE=DH.
(2)解:設(shè)DP=x,則EH=x,BH=10﹣x,
CH=CD﹣DH=CD﹣PE=10﹣(8﹣x)=2+x,
∴在Rt△BCH中,BC2+CH2=BH2
(2+x)2+82=(10﹣x)2,
∴x=,
∴DP=.
【題型】解答題
【結(jié)束】
25
【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進價比B品牌每套套裝進價多2.5元,已知用200元購進A種套裝的數(shù)量是用75元購進B種套裝數(shù)量的2倍.
(1)求A,B兩種品牌套裝每套進價分別為多少元?
(2)若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進B品牌的數(shù)量比購進A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進A品牌工具套裝多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘的畢達(dá)哥拉斯學(xué)派由古希臘哲學(xué)家畢達(dá)哥拉斯所創(chuàng)立,畢達(dá)哥拉斯學(xué)派認(rèn)為數(shù)是萬物的本原,事物的性質(zhì)是由某種數(shù)量關(guān)系決定的,如他們研究各種多邊形數(shù):記第n個k邊形數(shù)N(n,k)=n2+n(n≥1,k≥3,k、n都為整數(shù)),
如第1個三角形數(shù)N(1,3)=×12+×1=1;
第2個三角形數(shù)N(2,3)=×22+×2=3;
第3個四邊形數(shù)N(3,4)=×32+×3=9;
第4個四邊形數(shù)N(4,4)=×42+×4=16.
(1)N(5,3)=________,N(6,5)=________;
(2)若N(m,6)比N(m+2,4)大10,求m的值;
(3)若記y=N(6,t)-N(t,5),試求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A=50°,點D,E分別是邊AC,AB上的點(不與A,B,C重合),點P是平面內(nèi)一動點(P與D,E不在同一直線上),設(shè)∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點P在邊BC上運動(不與點B和點C重合),如圖(1)所示,則∠1+∠2=________
(用α的代數(shù)式表示).
(2)若點P在ABC的外部,如圖(2)所示,則∠α,∠1,∠2之間有何關(guān)系?寫出你的結(jié)論,并說明理由.
(3)當(dāng)點P在邊CB的延長線上運動時,試畫出相應(yīng)圖形,標(biāo)注有關(guān)字母與數(shù)字,并寫出對應(yīng)的∠α,∠1,∠2之間的關(guān)系式.(不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個小正方形的邊長都為1個單位長度,△ABC的三個頂點的位置。如圖所示,
現(xiàn)將△ABC平移后得△EDF,使點B的對應(yīng)點為點D,點A對應(yīng)點為點E.
(1)畫出△EDF;
(2)線段BD與AE有何關(guān)系? ____________;
(3)連接CD、BD,則四邊形ABDC的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共50個,小穎做摸球?qū)嶒,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是試驗中的一組統(tǒng)計數(shù)據(jù):
摸到球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的概率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請估計當(dāng)很大時,摸到白球的頻率將會接近______;(精確到0.1);
(2)假如隨機摸一次,摸到白球的概率P(白球)=______;
(3)試估算盒子里白色的球有多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=3,CD=4,點E在CD上,且DE=1.
(1)感知:如圖①,連接AE,過點E作EF丄AE,交BC于點F,連接AE,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點E作EF⊥PE,交BC于點F,連接PF.求證:△PDE和△ECF相似;
(3)應(yīng)用:如圖③,若EF交AB于點F,EF丄PE,其他條件不變,且△PEF的面積是6,則AP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以點C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點,點P在優(yōu)弧上.
(1)求出A,B兩點的坐標(biāo);
(2)試確定經(jīng)過A、B且以點P為頂點的拋物線解析式;
(3)在該拋物線上是否存在一點D,使線段OP與CD互相平分?若存在,求出點D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com