課題學(xué)習(xí)
●探究:
(1)在圖1中,已知線段AB,CD,其中點(diǎn)分別為E,F(xiàn).
①若A(-1,0),B(3,0),則E點(diǎn)坐標(biāo)為
;
②若C(-2,2),D(-2,-1),則F點(diǎn)坐標(biāo)為
;
(2)在圖2中,已知線段AB的端點(diǎn)坐標(biāo)為A(a,b),B(c,d),求出圖中AB中點(diǎn)D的坐標(biāo)(用含a,b,c,d的
代數(shù)式表示),并給出求解過(guò)程.
●歸納:
無(wú)論線段AB處于直角坐標(biāo)系中的哪個(gè)位置,當(dāng)其端點(diǎn)坐標(biāo)為A(a,b),B(c,d),AB中點(diǎn)為D(x,y) 時(shí),
x=
,y=
.(不必證明)
●運(yùn)用:
在圖2中,y=|x-1|的圖象x軸交于P點(diǎn).一次函數(shù)y=kx+1與y=|x-1|的圖象交點(diǎn)為A,B.
①求出交點(diǎn)A,B的坐標(biāo)(用k表示);
②若D為AB中點(diǎn),且PD垂直于AB時(shí),請(qǐng)利用上面的結(jié)論求出k的值.