【題目】如圖1,在△ABC中,AB=AC,∠BAC=60°,DBC邊上一點(diǎn),(不與點(diǎn)B、C)重合,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到AE,連接EC,則∠ACE的度數(shù)是__________,線段AC,CD,CE之間的數(shù)量關(guān)系是_______________.

(2)2,在△ABC中,AB=AC,∠BAC=90°DBC邊上一點(diǎn)(不與點(diǎn)B、C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,請寫出∠ACE的度數(shù)及線段AD,BD,CD之間的數(shù)量關(guān)系,并說明理由.

(3)如圖3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若點(diǎn)A滿足AB=AC,∠BAC=90°,請直接寫出線段AD的長度.

【答案】(1)60°AC=DC+EC(2)∠ACE=45°,BD2+CD2=2AD2,詳見解析(3)AD=AD=

【解析】

1)證明BAD≌△CAE,根據(jù)全等三角形的性質(zhì)解答;

2)根據(jù)全等三角形的性質(zhì)得到BD=CE,∠ACE=B,得到∠DCE=90°,根據(jù)勾股定理計(jì)算即可;

3)如圖3,作AECDE,連接AD,根據(jù)勾股定理得到BC==,推出點(diǎn)B,C,AD四點(diǎn)共圓,根據(jù)圓周角定理得到∠ADE=45°,求得ADE是等腰直角三角形,得到AE=DE,根據(jù)勾股定理即可得到結(jié)論.

(1)∵在ABC中,AB=AC,∠BAC=60°,

∴∠BAC=DAE=60°,

∴∠BAC-DAC=DAE-DAC,即∠BAD=CAE,

BADCAE中,

∴△BAD≌△CAE(SAS),

∴∠ACE=B=60°BD=CE,

BC=BD+CD=EC+CD,

AC=BC=EC+CD

故答案為:60°,AC=DC+EC;

(2)BD2+CD2=2AD2

理由如下:由(1)得,BAD≌△CAE,∴BD=CE,∠ACE=B=45°,

∴∠DCE=90°

CE2+CD2=ED2

RtADE中,AD2+AE2=ED2,又AD=AE,

BD2+CD2=2AD2;

(3)如圖3,作AECDE,連接AD,


∵在RtDBC中,DB=3,DC=5,∠BDC=90°,

BC=,

∵∠BAC=90°,AB=AC,

AB=AC=,∠ABC=ACB=45°,

∵∠BDC=BAC=90°

∴點(diǎn)B,CA,D四點(diǎn)共圓,

∴∠ADE=45°,

∴△ADE是等腰直角三角形,

AE=DE,

CE=5DE,

AE2+CE2=AC2,

AE2+(5AE)2=17

AE=1,AE=4

AD=AD=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個(gè)不透明的袋子,甲袋子里裝有標(biāo)有兩個(gè)數(shù)字的張卡片,乙袋子里裝有標(biāo)有三個(gè)數(shù)字的張卡片,兩個(gè)袋子里的卡片除標(biāo)有的數(shù)字不同外,其大小質(zhì)地完全相同.

1)從乙袋里任意抽出一張卡片,抽到標(biāo)有數(shù)字的概率為   

2)求從甲、乙兩個(gè)袋子里各抽一張卡片,抽到標(biāo)有兩個(gè)數(shù)字的卡片的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2+bx+cx軸相交于A(﹣1,0),Bm0)兩點(diǎn),與y軸相交于點(diǎn)C0,﹣3),拋物線的頂點(diǎn)為D

1)求BD兩點(diǎn)的坐標(biāo);

2)若P是直線BC下方拋物線上任意一點(diǎn),過點(diǎn)PPHx軸于點(diǎn)H,與BC交于點(diǎn)M,設(shè)Fy軸一動(dòng)點(diǎn),當(dāng)線段PM長度最大時(shí),求PH+HF+CF的最小值;

3)在第(2)問中,當(dāng)PH+HF+CF取得最小值時(shí),將△OHF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°后得到△OHF,過點(diǎn)FOF的垂線與x軸交于點(diǎn)Q,點(diǎn)R為拋物線對稱軸上的一點(diǎn),在平面直角坐標(biāo)系中是否存在點(diǎn)S,使得點(diǎn)D、Q、R、S為頂點(diǎn)的四邊形為菱形,若存在,請直接寫出點(diǎn)S的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將拋物線平移后,新拋物線經(jīng)過原拋物線的頂點(diǎn),新拋物線與軸正半軸交于點(diǎn),聯(lián)結(jié),,設(shè)新拋物線與軸的另一交點(diǎn)是,新拋物線的頂點(diǎn)是.

1)求點(diǎn)的坐標(biāo);

2)設(shè)點(diǎn)在新拋物線上,聯(lián)結(jié),如果平分,求點(diǎn)的坐標(biāo);

3)在(2)的條件下,將拋物線沿軸左右平移,點(diǎn)的對應(yīng)點(diǎn)為,當(dāng)相似時(shí),請直接寫出平移后得到拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC內(nèi)接于⊙O,∠BCA90°,∠CBA60°,AB10,點(diǎn)DAB邊上(異于點(diǎn)A,B)的一動(dòng)點(diǎn),DEAB交⊙O于點(diǎn)E,交AC于點(diǎn)G,交切線CF于點(diǎn)F

1)求證:FCCG

2)①當(dāng)AE   時(shí),四辺形BOEC為菱形;

②當(dāng)AD   時(shí),OGCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在藝術(shù)節(jié)期間向全校學(xué)生征集書畫作品,美術(shù)王老師從全校隨機(jī)抽取了四個(gè)班級記作A、B、C、D,對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了如下兩幅不完整的統(tǒng)計(jì)圖.

1)王老師抽查的四個(gè)班級共征集到作品多少件?

2)請把圖2的條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若全校參展作品中有五名同學(xué)獲得一等獎(jiǎng),其中有三名男生、二名女生.現(xiàn)在要在其中抽兩名同學(xué)去參加學(xué)校總結(jié)表彰座談會,請用畫樹狀圖或列表的方法求恰好抽中一名男生一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開設(shè)了:籃球,:足球,:跳繩,:健美操四種體育活動(dòng),為了解學(xué)生對這四種體育活動(dòng)的喜歡情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生,進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的同學(xué)必須選擇而且只能在4中體育活動(dòng)中選擇一種).將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫完整).

1)這次調(diào)查中,一共查了 名學(xué)生;

2)請補(bǔ)全兩幅統(tǒng)計(jì)圖;

3)若有3名最喜歡足球運(yùn)動(dòng)的學(xué)生,1名最喜歡跳繩運(yùn)動(dòng)的學(xué)生組隊(duì)外出參加一次聯(lián)誼互動(dòng),欲從中選出2人擔(dān)任組長(不分正副),求兩人均是最喜歡足球運(yùn)動(dòng)的學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線軸分別交于點(diǎn)A-3,0),Bm,0).將y1向右平移4個(gè)單位得到y(tǒng)2

1求b的值;

2求拋物線y2的表達(dá)式;

3拋物線y2軸交于點(diǎn)D,軸交于點(diǎn)E、F點(diǎn)E在點(diǎn)F的左側(cè)),記拋物線在D、F之間的部分為圖象G包含D、F兩點(diǎn)),若直線與圖象G有一個(gè)公共點(diǎn),請結(jié)合函數(shù)圖象,求直線與拋物線y2的對稱軸交點(diǎn)的縱坐標(biāo)t的值或取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=-x2bxcb,c為常數(shù))的圖象經(jīng)過點(diǎn)(2,3),(3,0).

1)則b=,c=;

2)該二次函數(shù)圖象與y軸的交點(diǎn)坐標(biāo)為,頂點(diǎn)坐標(biāo)為;

3)在所給坐標(biāo)系中畫出該二次函數(shù)的圖象;

4)根據(jù)圖象,當(dāng)-3x2時(shí),y的取值范圍是.

查看答案和解析>>

同步練習(xí)冊答案