【題目】如圖1,在△ABC中,AB=AC,∠BAC=60°,D為BC邊上一點(diǎn),(不與點(diǎn)B、C)重合,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到AE,連接EC,則∠ACE的度數(shù)是__________,線段AC,CD,CE之間的數(shù)量關(guān)系是_______________.
(2)2,在△ABC中,AB=AC,∠BAC=90°,D為BC邊上一點(diǎn)(不與點(diǎn)B、C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AE,連接EC,請寫出∠ACE的度數(shù)及線段AD,BD,CD之間的數(shù)量關(guān)系,并說明理由.
(3)如圖3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若點(diǎn)A滿足AB=AC,∠BAC=90°,請直接寫出線段AD的長度.
【答案】(1)60°,AC=DC+EC(2)∠ACE=45°,BD2+CD2=2AD2,詳見解析(3)AD=或AD=
【解析】
(1)證明△BAD≌△CAE,根據(jù)全等三角形的性質(zhì)解答;
(2)根據(jù)全等三角形的性質(zhì)得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根據(jù)勾股定理計(jì)算即可;
(3)如圖3,作AE⊥CD于E,連接AD,根據(jù)勾股定理得到BC==,推出點(diǎn)B,C,A,D四點(diǎn)共圓,根據(jù)圓周角定理得到∠ADE=45°,求得△ADE是等腰直角三角形,得到AE=DE,根據(jù)勾股定理即可得到結(jié)論.
(1)∵在△ABC中,AB=AC,∠BAC=60°,
∴∠BAC=∠DAE=60°,
∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,
在△BAD和△CAE中,,
∴△BAD≌△CAE(SAS),
∴∠ACE=∠B=60°,BD=CE,
∴BC=BD+CD=EC+CD,
∴AC=BC=EC+CD;
故答案為:60°,AC=DC+EC;
(2)BD2+CD2=2AD2,
理由如下:由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,
∴∠DCE=90°,
∴CE2+CD2=ED2,
在Rt△ADE中,AD2+AE2=ED2,又AD=AE,
∴BD2+CD2=2AD2;
(3)如圖3,作AE⊥CD于E,連接AD,
∵在Rt△DBC中,DB=3,DC=5,∠BDC=90°,
∴BC=,
∵∠BAC=90°,AB=AC,
∴AB=AC=,∠ABC=∠ACB=45°,
∵∠BDC=∠BAC=90°,
∴點(diǎn)B,C,A,D四點(diǎn)共圓,
∴∠ADE=45°,
∴△ADE是等腰直角三角形,
∴AE=DE,
∴CE=5DE,
∵AE2+CE2=AC2,
∴AE2+(5AE)2=17,
∴AE=1,AE=4,
∴AD=或AD=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)不透明的袋子,甲袋子里裝有標(biāo)有兩個(gè)數(shù)字的張卡片,乙袋子里裝有標(biāo)有三個(gè)數(shù)字的張卡片,兩個(gè)袋子里的卡片除標(biāo)有的數(shù)字不同外,其大小質(zhì)地完全相同.
(1)從乙袋里任意抽出一張卡片,抽到標(biāo)有數(shù)字的概率為 .
(2)求從甲、乙兩個(gè)袋子里各抽一張卡片,抽到標(biāo)有兩個(gè)數(shù)字的卡片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸相交于A(﹣1,0),B(m,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,﹣3),拋物線的頂點(diǎn)為D.
(1)求B、D兩點(diǎn)的坐標(biāo);
(2)若P是直線BC下方拋物線上任意一點(diǎn),過點(diǎn)P作PH⊥x軸于點(diǎn)H,與BC交于點(diǎn)M,設(shè)F為y軸一動(dòng)點(diǎn),當(dāng)線段PM長度最大時(shí),求PH+HF+CF的最小值;
(3)在第(2)問中,當(dāng)PH+HF+CF取得最小值時(shí),將△OHF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°后得到△OH′F′,過點(diǎn)F′作OF′的垂線與x軸交于點(diǎn)Q,點(diǎn)R為拋物線對稱軸上的一點(diǎn),在平面直角坐標(biāo)系中是否存在點(diǎn)S,使得點(diǎn)D、Q、R、S為頂點(diǎn)的四邊形為菱形,若存在,請直接寫出點(diǎn)S的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將拋物線平移后,新拋物線經(jīng)過原拋物線的頂點(diǎn),新拋物線與軸正半軸交于點(diǎn),聯(lián)結(jié),,設(shè)新拋物線與軸的另一交點(diǎn)是,新拋物線的頂點(diǎn)是.
(1)求點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)在新拋物線上,聯(lián)結(jié),如果平分,求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,將拋物線沿軸左右平移,點(diǎn)的對應(yīng)點(diǎn)為,當(dāng)和相似時(shí),請直接寫出平移后得到拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC內(nèi)接于⊙O,∠BCA=90°,∠CBA=60°,AB=10,點(diǎn)D是AB邊上(異于點(diǎn)A,B)的一動(dòng)點(diǎn),DE⊥AB交⊙O于點(diǎn)E,交AC于點(diǎn)G,交切線CF于點(diǎn)F.
(1)求證:FC=CG;
(2)①當(dāng)AE= 時(shí),四辺形BOEC為菱形;
②當(dāng)AD= 時(shí),OG∥CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在藝術(shù)節(jié)期間向全校學(xué)生征集書畫作品,美術(shù)王老師從全校隨機(jī)抽取了四個(gè)班級記作A、B、C、D,對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)王老師抽查的四個(gè)班級共征集到作品多少件?
(2)請把圖2的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若全校參展作品中有五名同學(xué)獲得一等獎(jiǎng),其中有三名男生、二名女生.現(xiàn)在要在其中抽兩名同學(xué)去參加學(xué)校總結(jié)表彰座談會,請用畫樹狀圖或列表的方法求恰好抽中一名男生一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開設(shè)了:籃球,:足球,:跳繩,:健美操四種體育活動(dòng),為了解學(xué)生對這四種體育活動(dòng)的喜歡情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生,進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的同學(xué)必須選擇而且只能在4中體育活動(dòng)中選擇一種).將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫完整).
(1)這次調(diào)查中,一共查了 名學(xué)生;
(2)請補(bǔ)全兩幅統(tǒng)計(jì)圖;
(3)若有3名最喜歡足球運(yùn)動(dòng)的學(xué)生,1名最喜歡跳繩運(yùn)動(dòng)的學(xué)生組隊(duì)外出參加一次聯(lián)誼互動(dòng),欲從中選出2人擔(dān)任組長(不分正副),求兩人均是最喜歡足球運(yùn)動(dòng)的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線與軸分別交于點(diǎn)A(-3,0),B(m,0).將y1向右平移4個(gè)單位得到y(tǒng)2.
(1)求b的值;
(2)求拋物線y2的表達(dá)式;
(3)拋物線y2與軸交于點(diǎn)D,與軸交于點(diǎn)E、F(點(diǎn)E在點(diǎn)F的左側(cè)),記拋物線在D、F之間的部分為圖象G(包含D、F兩點(diǎn)),若直線與圖象G有一個(gè)公共點(diǎn),請結(jié)合函數(shù)圖象,求直線與拋物線y2的對稱軸交點(diǎn)的縱坐標(biāo)t的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=-x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點(diǎn)(2,3),(3,0).
(1)則b=,c=;
(2)該二次函數(shù)圖象與y軸的交點(diǎn)坐標(biāo)為,頂點(diǎn)坐標(biāo)為;
(3)在所給坐標(biāo)系中畫出該二次函數(shù)的圖象;
(4)根據(jù)圖象,當(dāng)-3<x<2時(shí),y的取值范圍是.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com