已知△ABC的三邊分別為2、x、5,則化簡
(x-3)2
+
(x-7)2
的值為
4
4
分析:首先根據(jù)三角形的三邊的關(guān)系求得x的范圍,然后根據(jù)二次根式的性質(zhì)進(jìn)行化簡.
解答:解:∵2、x、5是三角形的三邊,
∴3<x<7,
∴x-3>0,x-7<0,
∴原式=x-3+(7-x)=4.
故答案是:4.
點(diǎn)評:本題考查了三角形的三邊關(guān)系以及二次根式的化簡,正確理解二次根式的性質(zhì)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)計(jì)算:(
48
+
20
)-(
12
-
5

(2)已知△ABC的三邊分別是a=5,b=12,c=13,設(shè)p=
1
2
(a+b+c)
,S1=
1
4
[a2b2-(
a2+b2-c2
2
)
2
]
,S2=
p(p-a)(p-b)(p-c)
,求S1-S2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、已知△ABC的三邊分別是4,5,6,則與它相似△A′B′C′的最長邊為12,則△A′B′C′的周長是
30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊分別是a、b、c,且滿足
a-3
+b2-4b+4=0
,則c的取值范圍是
1<c<5
1<c<5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊分別是a、b、c,且滿足a2b-a2c-b3+b2c-bc2+c3=0,試判斷△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)計(jì)算:(-2a)2-(a-2)(a-6)
(2)[(x-2y)2-(x-2y)(x+2y)]÷4y
(3)已知ABC的三邊分別是a=m2-n2,b=2mn,c=m2+n2.試判斷ABC是否是直角三角形.

查看答案和解析>>

同步練習(xí)冊答案