設∠ABC=90°,∠ACB=45°,D為BC延長線上一點,且CD=AC,則ctg22°30'等于  (   )

  

答案:A
提示:

畫出圖形,找出45度的半角位置。


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

現(xiàn)有邊長為180厘米的正方形鐵皮,準備將它設計并制成一個開口的水槽,使水槽能通過的水的流量最大.
某校九年級(2)班數(shù)學興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面,進行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設BC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大。
(2)假如你是該興趣小組中的成員,請你再提供一種方案,使你所設計的水槽的橫截面精英家教網(wǎng)面積更大.畫出你設計的草圖,標上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一個動點到精英家教網(wǎng)達端點時,另一個動點也隨之停止運動,設運動時間為t(s).
(1)當t為何值時,四邊形PQCD為平行四邊形?
(2)當t為何值時,PQ與⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知△ABC,∠ACB=90°,AC=BC,點E、F在AB上,∠ECF=45°,設△ABC的面積為S,說明AF•BE=2S的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:013

設∠ABC=90°,ACB=45°,DBC延長線上一點,CD=AC,cot22°30'等于

[    ]

查看答案和解析>>

同步練習冊答案