【題目】反比例函數y= 的圖象如圖所示,以下結論: ①常數m<﹣1;
②在每個象限內,y隨x的增大而增大;
③若A(﹣1,h),B(2,k)在圖象上,則h<k;
④若P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上.
其中正確的是( )
A.①②
B.②③
C.③④
D.①④
【答案】C
【解析】解:∵反比例函數的圖象位于一三象限, ∴m>0
故①錯誤;
當反比例函數的圖象位于一三象限時,在每一象限內,y隨x的增大而減小,故②錯誤;
將A(﹣1,h),B(2,k)代入y= 得到h=﹣m,2k=m,
∵m>0
∴h<k
故③正確;
將P(x,y)代入y= 得到m=xy,將P′(﹣x,﹣y)代入y= 得到m=xy,
故P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上
故④正確,
故選C
【考點精析】認真審題,首先需要了解反比例函數的性質(性質:當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大).
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點都在格點上,建立如圖所示的平面直角坐標系.
①將△ABC向左平移7個單位后再向下平移3個單位,請畫出兩次平移后的△A1B1C1 , 若M為△ABC內的一點,其坐標為(a,b),直接寫出兩次平移后點M的對應點M1的坐標;
②以原點O為位似中心,將△ABC縮小,使變換后得到的△A2B2C2與△ABC對應邊的比為1:2.請在網格內畫出在第三象限內的△A2B2C2 , 并寫出點A2的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,Rt△PAB的直角頂點P(3,4)在函數y= (x>0)的圖象上,頂點A、B在函數y= (x>0,0<t<k)的圖象上,PA∥x軸,連接OP,OA,記△OPA的面積為S△OPA , △PAB的面積為S△PAB , 設w=S△OPA﹣S△PAB . ①求k的值以及w關于t的表達式;
②若用wmax和wmin分別表示函數w的最大值和最小值,令T=wmax+a2﹣a,其中a為實數,求Tmin .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在水域上建一個演藝廣場,演藝廣場由看臺Ⅰ,看臺Ⅱ,三角形水域ABC,及矩形表演臺BCDE四個部分構成(如圖),看臺Ⅰ,看臺Ⅱ是分別以AB,AC為直徑的兩個半圓形區(qū)域,且看臺Ⅰ的面積是看臺Ⅱ的面積的3倍,矩形表演臺BCDE 中,CD=10米,三角形水域ABC的面積為 平方米,設∠BAC=θ.
(1)求BC的長(用含θ的式子表示);
(2)若表演臺每平方米的造價為0.3萬元,求表演臺的最低造價.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把拋物線y= x2平移得到拋物線m,拋物線m經過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y= x2交于點Q,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把直角△ABC的斜邊AC放在定直線l上,按順時針的方向在直線l上轉動兩次,使它轉到△A2B1C2的位置,設AB= ,BC=1,則頂點A運動到點A2的位置時,點A所經過的路線為( )
A.( + )π
B.( + )π
C.2π
D. π
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,下列說法中不正確的是( )
A.DE= BC
B.
C.△ADE∽△ABC
D.S△ADE:S△ABC=1:2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com