解:(1)∵∠EAC=180°,∠BAC=90°,
∴∠BAE=90°,
而AN平分∠BAE,
∴∠NAE=
×90°=45°,
∴∠EAD=180°-∠NAE-∠MAD=180°-45°-60°=75°;
(2)30°+
m°;
(3)30°+m°;
(4)如圖4(1),
∵∠NAB=90°,
∴∠MAB=90°,
∴∠MAC=m°-90°,
∴∠CAD=∠MAD-∠MAC=60°-(m°-90°)=150°-m°,
∴∠EAD=180°-∠CAD=180°-(150°-m°)=30°+m°;
如圖4(2),∵∠NAC=∠BAC-∠BAN=m°-90°,
∴∠EAM=m°-90°,
∴∠EAD=∠EAM+∠MAD=m°-90°+60°=m°-30°;
如圖4(3),∵∠MAC=∠BAC-∠BAM=m°-90°,
∴∠CAD=∠MAD+∠MAC=60°+(m°-90°)=m°-30°,
∴∠EAD=180°-∠CAD=180°-(m°-30°)=210°-m°;
如圖4(4),
∵∠NAC=∠BAC-∠BAN=m°-90°,
∴∠MAE
=∠NAC=m°-90°,
∴∠EAD=∠MAD-∠MAE=60°-(m°-90°)=150°-m°.
分析:(1)根據(jù)平角的定義得到∠EAC=180°,而∠BAC=90°,則∠BAE=90°,再根據(jù)角平分線的定義得∠NAE=
×90°=45°,然后利用平角的定義得到∠EAD=180°-∠NAE-∠MAD=180°-45°-60°,計算即可.
(2)與(1)的計算方法一樣:先得到∠NAE=
(180°-m°),然后利用平角的定義得到∠EAD=180°-∠NAE-∠MAD,代入計算即可;
(3)由∠NAB=90°得∠BAM=90°,則∠MAC=m°-90°,而∠MAC+∠CAD=∠MAD=60°,則∠DAC=60°-∠MAC=150°-m°,然后根據(jù)互補即可得到∠EAD的度數(shù);
(4)如圖4(2),由∠NAB=90°,得到∠NAC=m°-90°,根據(jù)對頂角相等得到∠EAM=∠MAD=m°-90°,利用∠EAD=∠EAM+∠MAD即可得到答案.其他情況類似證明.
點評:本題考查了角的計算;也考查了角平分線的定義、平角的定義、互余和互補和對頂角的性質(zhì).