如圖所示,平行四邊形ABCD的周長(zhǎng)是18cm,對(duì)角線AC、BD相交于點(diǎn)O,若△AOD與△AOB的周長(zhǎng)差是5cm,則邊AB的長(zhǎng)是    cm.
【答案】分析:利用平行四邊形的對(duì)角線互相平分這一性質(zhì),確定已知條件中兩三角形周長(zhǎng)的差也是平行四邊形兩鄰邊邊長(zhǎng)的差,進(jìn)而確定平行四邊形的邊長(zhǎng).
解答:解:∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,
∵△AOD的周長(zhǎng)=OA+OD+AD,△AOB的周長(zhǎng)=OA+OB+AB,
又∵△AOD與△AOB的周長(zhǎng)差是5cm,
∴AD=AB+5,
設(shè)AB=x,AD=5+x,
則2(x+5+x)=18,
解得x=2,
即AB=2cm.
故答案為2.
點(diǎn)評(píng):本題是應(yīng)用平行四邊形性質(zhì)的典型題目,解決此題運(yùn)用了平行四邊形的對(duì)邊相等和角平分線互相平分這兩條性質(zhì),題目難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖所示,平行四邊形ABCD,AD=5,AB=9,點(diǎn)A的坐標(biāo)為(-3,0),則點(diǎn)C的坐標(biāo)為
(9,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖所示,平行四邊形ABCD中,E、F分別在AD、BD上,AE=CF,AF與BE交于點(diǎn)G,CE與DF交于點(diǎn)H,猜想EF與GH間的關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

體育課上,老師用繩子圍成一個(gè)周長(zhǎng)為36米的游戲場(chǎng)地,圍成的場(chǎng)地是如圖所示的平行四邊形ABCD,∠ABC=45°.設(shè)邊AB的長(zhǎng)為x(單位:米),面積為y(單位:米2).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)求出當(dāng)x為何值時(shí),平行四邊形ABCD的面積最大,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下面的數(shù)陣是由一些奇數(shù)排列而成的.
(1)若用類似如圖所示的平行四邊形框出的四個(gè)數(shù)的和是400,求這四個(gè)數(shù);
(2)是否存在這樣的四個(gè)數(shù),使它們的和為2012?若存在,求出這四個(gè)數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)用如圖所示的平行四邊形在日歷中圈出了個(gè)數(shù),若和為22,則這四個(gè)數(shù)為
2,3,8,9
2,3,8,9

(2)若圈出四個(gè)數(shù)中最小的數(shù)為m,則最大的數(shù)為
m+7
m+7
四個(gè)數(shù)的和為
4m+14
4m+14

(3)若圈出四個(gè)數(shù)的和是最小的數(shù)的5倍,求所圈的四個(gè)數(shù)中的最小數(shù)
14
14

查看答案和解析>>

同步練習(xí)冊(cè)答案