當m取何值時,關(guān)于x的方程x-(2m+1)x=m(x-3)+7的解是負數(shù)?

解:x-(2m+1)x=m(x-3)+7,
x-2mx-x=mx-3m+7,
整理得:-3mx=-3m+7
∴x=
∵x<0,
<0
(1)當m<0時,有3m-7>0,即m>,無解.
(2)當m>0時,有3m-7<0,即m<,則:0<m<
答:當0<m<時,方程的解是負數(shù).
分析:本題首先要解這個關(guān)于x的方程,求出方程的解,根據(jù)解是負數(shù),可以得到一個關(guān)于m的不等式,就可以求出m的范圍.
點評:本題是一個方程與不等式的綜合題目.解關(guān)于m的不等式是本題的一個難點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

24、先閱讀下列知識,然后解答問題:
含有一個未知數(shù),并且未知數(shù)的最高次指數(shù)是2的方程,叫做一元二次方程,如:x2-2x+1=0.已知關(guān)于x的一元二次方程ax2+bx+c=0(a、b、c表示已知量,a≠0)的解的情況是:
①當b2-4ac>0時,方程有兩個不相等的解;
②當b2-4ac=0時,方程有兩個相等的解(即一個解);
③當b2-4ac<0時,方程沒有解.
(1)一元二次方程2x2-4x+5=0有幾個解?為什么?
(2)當a取何值時,關(guān)于x的一元二次方程x2-2x+(a-2)=0有兩個不相等的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

當k取何值時,關(guān)于x的方程3(x+1)=5-kx分別有(1)正數(shù)解;(2)負數(shù)解;(3)不大于1的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

當m取何值時,關(guān)于x的方程x-(2m+1)x=m(x-3)+7的解是負數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

當m取何值時,關(guān)于x的一元二次方程m2x2+(2m-1)x+1=0有實數(shù)根?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

解答題
①當m取何值時,關(guān)于x的方程:3x-2=4與5x-1=-m的解相等?
②一堆小麥用8個編織袋來裝,以每袋55千克為標準,超過的記作為正數(shù),不足的記作為負數(shù),現(xiàn)記錄如下:(單位:千克)
+2,-3,+2,+1,-2,-1,0,-2
(1)這堆小麥共重多少千克?
(2)若每千克小麥的售價為1.2元,則這堆小麥可賣多少錢?
③探索規(guī)律:觀察下面由“※”組成的圖案和算式,解答問題:精英家教網(wǎng)
(1)請猜想1+3+5+7+9+…+19=
 

(2)請猜想1+3+5+7+9+…+(2n-1)+(2n+1)=
 
;
(3)請用上述規(guī)律計算:103+105+107+…+2003+2005.
④在左邊的日歷中,用一個正方形任意圈出二行二列四個數(shù),
精英家教網(wǎng)精英家教網(wǎng)
若在第二行第二列的那個數(shù)表示為a,其余各數(shù)分別為b,c,d.
精英家教網(wǎng)
(1)分別用含a的代數(shù)式表示b,c,d這三個數(shù).
(2)求這四個數(shù)的和(用含a的代數(shù)式表示,要求合并同類項化簡)
(3)這四個數(shù)的和會等于51嗎?如果會,請算出此時a的值,如果不會,說明理由.(要求列方程解答)

查看答案和解析>>

同步練習冊答案