分析 (1)根據(jù)角平分線定義得出∠DBC=$\frac{1}{2}$∠ABC,∠DCB=$\frac{1}{2}$∠ACB,求出∠DBC+∠DCB=65°,代入∠BDC=180°-(∠DBC+∠DCB)求出即可;
(2)由(1)知,∠BDC=180°-$\frac{1}{2}$(∠ABC+∠ACB),而∠A=∠ABC+∠ACB,代入可得;
(3)由(2)知∠BDC=90°+$\frac{1}{2}$∠A,代入可得.
解答 解:(1)∵BD平分∠ABC、CD平分∠ACB,
∴∠DBC=$\frac{1}{2}$∠ABC,∠DCB=$\frac{1}{2}$∠ACB,
∵∠ABC+∠ACB=130°,
∴在△BDC中,∠BDC=180°-(∠DBC+∠DCB)=180°-$\frac{1}{2}$(∠ABC+∠ACB)=115°;
(2)由(1)知,
∠BDC=180°-(∠DBC+∠DCB)
=180°-$\frac{1}{2}$(∠ABC+∠ACB)
=180°-$\frac{1}{2}$(180°-∠A)
=90°+$\frac{1}{2}$∠A,
當(dāng)∠A=50°時(shí),∠BDC=115°;
(3)由(2)知,當(dāng)∠A=n°時(shí),∠BDC=90°+$\frac{1}{2}$n°.
故答案為:(1)115°,(2)115°,$\frac{1}{2}$∠A,(3)90°+$\frac{1}{2}$n°.
點(diǎn)評(píng) 本題主要考查角平分線定義和三角形內(nèi)角和定理,熟知三角形的內(nèi)角和等于180°是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3cm | B. | 4cm | C. | (3+$\sqrt{3}$)cm | D. | 3$\sqrt{3}$cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com