分析 圖②中,論:BD+AE=AB,作EM∥AB交BC于M,先證明△EMC是等邊三角形得CE=CM,AE=BM,再證明△ABD≌△DEM,得DB=EM=MC由此可以對稱結(jié)論.圖③中,結(jié)論:BD-AE=AB,證明方法類似.
解答 解;如圖②中,結(jié)論:BD+AE=AB.
理由:作EM∥AB交BC于M,
∵△ABC是等邊三角形,
∴∠ABC=∠C=∠BAC=60°,AB=BC=AC,
∴∠CEM=∠CAB=60°,∠CME=∠CBA=60°,
∴△CME是等邊三角形,
∴CE=CM=EM,∠EMC=60°,
∴AE=BM,
∵DA=DE,
∴∠DAE=∠DEA,
∴∠BAC+∠DAB=∠C+∠EDM,
∴∠DAB=∠EDM,
∵∠ABD=180°-∠ABC=120°,∠EMD=180°-∠EMC=120°,
∴∠ABD=∠DME,
在△ABD和△DEM中,
$\left\{\begin{array}{l}{∠DAB=∠EDM}\\{∠ABD=∠EMD}\\{AD=DE}\end{array}\right.$,
∴△ABD≌△DEM,
∴DB=EM=CM,
∴DB+AE=CM+BM=BC=AB.
如圖③中,結(jié)論:BD-AE=AB.
理由:作EM∥AB交BC于M,
∵△ABC是等邊三角形,
∴∠ABC=∠C=∠BAC=60°,AB=BC=AC,
∴∠CEM=∠CAB=60°,∠CME=∠CBA=60°,
∴△CME是等邊三角形,
∴CE=CM=EM,∠EMC=∠MEC=60°,
∴AE=BM,
∵DA=DE,
∴∠DAE=∠DEA,
∴∠C+∠ADC=∠MEC+∠EDDEM,
∴∠ADB=∠DEM,
∵∠ABD=180°-∠ABC=120°,∠EMD=180°-∠EMC=120°,
∴∠ABD=∠DME,
在△ABD和△DEM中,
$\left\{\begin{array}{l}{∠ADB=∠DEM}\\{∠ABD=∠EMD}\\{AD=DE}\end{array}\right.$,
∴△ABD≌△DME,
∴DB=EM=CM,
∴DB-AE=CM-BM=BC=AB.
點評 本題考查全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是添加輔助線構(gòu)造全等三角形,注意形變證明方法基本不變,屬于中考?碱}型.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}-\sqrt{3}=\sqrt{2}$ | B. | $\sqrt{4\frac{1}{9}}=2\frac{1}{3}$ | C. | $\sqrt{{{({2-\sqrt{5}})}^2}}=2-\sqrt{5}$ | D. | $\frac{1}{{2-\sqrt{3}}}=2+\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com