證明題:
在△ABC中,AB>AC,AD是中線,AE是高,求證:AB2-AC2=2BC•DE.

解:∵AE是高,
∴△ABE和△ACE是直角三角形,
∴AB2=BE2+AE2,AC2=AE2+EC2,
∴AB2-AC2=BE2-EC2
=(BE+CE)(BE-CE)
=BC(BD+DE-CE),
∵AD是中線,
∴AB2-AC2=BC(CD+DE-CE)
=BC(DE+DE)
=2BC•DE.
分析:由勾股定理可得出AB2=BE2+AE2,AC2=AE2+EC2,則AB2-AC2=BE2-EC2,由平方差公式可得出答案.
點(diǎn)評(píng):本題考查了勾股定理以及三角形的角平分線、中線和高線,是基礎(chǔ)知識(shí)要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

證明題:
在△ABC中,AB>AC,AD是中線,AE是高,求證:AB2-AC2=2BC•DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

辨析題:在△ABC中,已知AB>AC,求證:AB=AC.
證明:如圖,作∠BAC的平分線與邊BC的中垂線交于點(diǎn)O,
則OB=OC,再作OE垂直AB于E,OF垂直AC于F,則OE=OF,
∴Rt△BOE≌Rt△COF,
∴BE=CF,①
在Rt△AOE和Rt△AOF中,OE=OF,AO=AO,
∴Rt△AOE≌Rt△AOF
∴AE=AF,②
由①、②得,AB=AC.
上述畫圖與證明過程中,哪里出錯(cuò)了呢?
這說明我們今后在解題時(shí)又要注意什么呢?
在△ABC中,AB>AC,∠BAC的平分線與邊BC的中垂線相交于點(diǎn)O,OE垂直AB于點(diǎn)E,那么三條線段AB、AC、BE有何等量關(guān)系?請(qǐng)你寫出來并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

辨析題:在△ABC中,已知AB>AC,求證:AB=AC.
證明:如圖,作∠BAC的平分線與邊BC的中垂線交于點(diǎn)O,
則OB=OC,再作OE垂直AB于E,OF垂直AC于F,則OE=OF,
∴Rt△BOE≌Rt△COF,
∴BE=CF,①
在Rt△AOE和Rt△AOF中,OE=OF,AO=AO,
∴Rt△AOE≌Rt△AOF
∴AE=AF,②
由①、②得,AB=AC.
上述畫圖與證明過程中,哪里出錯(cuò)了呢?
這說明我們今后在解題時(shí)又要注意什么呢?
在△ABC中,AB>AC,∠BAC的平分線與邊BC的中垂線相交于點(diǎn)O,OE垂直AB于點(diǎn)E,那么三條線段AB、AC、BE有何等量關(guān)系?請(qǐng)你寫出來并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

辨析題:在△ABC中,已知AB>AC,求證:AB=AC.
證明:如圖,作∠BAC的平分線與邊BC的中垂線交于點(diǎn)O,
則OB=OC,再作OE垂直AB于E,OF垂直AC于F,則OE=OF,
∴Rt△BOE≌Rt△COF,
∴BE=CF,①
在Rt△AOE和Rt△AOF中,OE=OF,AO=AO,
∴Rt△AOE≌Rt△AOF
∴AE=AF,②
由①、②得,AB=AC.
上述畫圖與證明過程中,哪里出錯(cuò)了呢?
這說明我們今后在解題時(shí)又要注意什么呢?
在△ABC中,AB>AC,∠BAC的平分線與邊BC的中垂線相交于點(diǎn)O,OE垂直AB于點(diǎn)E,那么三條線段AB、AC、BE有何等量關(guān)系?請(qǐng)你寫出來并加以證明.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案