【題目】已知:在ABC中,∠ACB=90°,點(diǎn)P是線段AC上一點(diǎn),過(guò)點(diǎn)AAB的垂線,交BP的延長(zhǎng)線于點(diǎn)M,MNAC于點(diǎn)N,PQAB于點(diǎn)QAQ=MN 求證:

1APM是等腰三角形;

2PC=AN

【答案】1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

(1)利用條件得到∠BAM=ANM=90°,∠PAQ=AMN即可解答.

(2)轉(zhuǎn)換角度,利用角平分線性質(zhì)解答.

1)解:∵BAAM,MNAC

∴∠BAM=ANM=90°,

∴∠PAQ+MAN=MAN+AMN=90°,

∴∠PAQ=AMN

PQAB,MNAC

∴∠PQA=ANM=90°,

AQPMNA中,

∴△AQP≌△MNA

MA=AP,

∴△APM是等腰三角形.

2)解:∵MA=AP,

∴∠AMP=APM,

∵∠APM=BPC,

∴∠AMP=BPC,

∵∠BPC+PBC=90°,∠AMB+ABM=180°-BAM=90°,

∴∠ABM=PBC

PQAB,PCBC

PQ=PC(角平分線的性質(zhì)),

由(1)可知AN=PQ

PC=AN

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制度.若每月用水量不超過(guò)14噸(含14噸),則每噸按政府補(bǔ)貼優(yōu)惠價(jià)2元收費(fèi);若每月用水量超過(guò)14噸,則超過(guò)部分每噸按市場(chǎng)價(jià)3.5元收費(fèi).小明家2月份用水20噸,交水費(fèi)49元;3月份用水18噸,交水費(fèi)42元.

(1)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,請(qǐng)寫(xiě)出yx之間的函數(shù)關(guān)系式;

(2)小明家5月份用水30噸,則他家應(yīng)交水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB90°,AD平分∠BACDEABE

1)若∠DEC25°,求∠B的度數(shù);

2)求證:直線AD是線段CE的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球隊(duì)要從小軍和小勇兩名隊(duì)員中選派一人參加市籃球協(xié)會(huì)的投籃比賽,在最近的十次選拔測(cè)試中,他倆投籃十次的進(jìn)球個(gè)數(shù)如下表所示:

小軍

7

8

8

8

8

9

8

9

7

8

小勇

7

8

9

5

9

10

7

10

9

6

l)請(qǐng)?zhí)顚?xiě)下表:

平均數(shù)

中位數(shù)

眾數(shù)

極差

方差

小軍

8

8

______

span>2

______

小勇

______

______

9

_______

2.6

2)歷屆比賽成績(jī)表明,十次投進(jìn)八球就很可能獲獎(jiǎng)但很難奪冠,十次投進(jìn)九球就很可能奪冠,那么你認(rèn)為想要獲獎(jiǎng)應(yīng)該派誰(shuí)參賽,想要奪冠應(yīng)該派誰(shuí)參賽?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,放置的△OAB1,B1A1B2,B2A2B3,…都是邊長(zhǎng)為2的等邊三角形,邊AOy軸上,點(diǎn)B1、B2、B3都在直線y=x上,則點(diǎn)A2018的坐標(biāo)為( 。

A. (2018,2020) B. (2018,2018) C. (2020,2020) D. (2018,2020)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點(diǎn).

(1)分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;

(2)過(guò)點(diǎn)BBCx軸,垂足為點(diǎn)C,連接AC,求ACB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,已知ADBC,AB=CD,延長(zhǎng)線段CB到E,使BE=AD,連接AE、AC.

1求證:ABE≌△CDA;

2DAC=40°,求EAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45

1)求一次函數(shù)y=kx+b的表達(dá)式;

2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在四邊形ABCD中,∠A90°.若AB4cm,AD3cmCD12cm,BC13cm

1)請(qǐng)說(shuō)明BDCD;

2)求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案