【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo).
【答案】
(1)解:過(guò)點(diǎn)A作AD⊥x軸,垂足為D
由A(n,6),C(﹣2,0)可得,
OD=n,AD=6,CO=2
∵tan∠ACO=2
∴ =2,即 =2
∴n=1
∴A(1,6)
將A(1,6)代入反比例函數(shù),得m=1×6=6
∴反比例函數(shù)的解析式為
將A(1,6),C(﹣2,0)代入一次函數(shù)y=kx+b,可得
解得
∴一次函數(shù)的解析式為y=2x+4
(2)解:由 可得
解得x1=1,x2=﹣3
∵當(dāng)x=﹣3時(shí),y=﹣2
∴點(diǎn)B坐標(biāo)為(﹣3,﹣2)
【解析】本題主要考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,解決問(wèn)題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式.求反比例函數(shù)與一次函數(shù)的交點(diǎn)坐標(biāo)時(shí),把兩個(gè)函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解,則兩者有交點(diǎn),若方程組無(wú)解,則兩者無(wú)交點(diǎn).(1)先過(guò)點(diǎn)A作AD⊥x軸,根據(jù)tan∠ACO=2,求得點(diǎn)A的坐標(biāo),進(jìn)而根據(jù)待定系數(shù)法計(jì)算兩個(gè)函數(shù)解析式;(2)先聯(lián)立兩個(gè)函數(shù)解析式,再通過(guò)解方程求得交點(diǎn)B的坐標(biāo)即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)(﹣2,1),先將△ABC沿一確定方向平移得到△A1B1C1 , 點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),再將△A1B1C1繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2 , 點(diǎn)A1的對(duì)應(yīng)點(diǎn)為點(diǎn)A2 .
(1)畫出△A1B1C1;
(2)畫出△A2B2C2;
(3)求出在這兩次變換過(guò)程中,點(diǎn)A經(jīng)過(guò)點(diǎn)A1到達(dá)A2的路徑總長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件.已知生產(chǎn)一件A種產(chǎn)品需用甲種原料9千克、乙種原料3千克,可獲利潤(rùn)700元;生產(chǎn)一件B種產(chǎn)品需用甲種原料4千克、乙種原料10千克,可獲利潤(rùn)1200元。設(shè)生產(chǎn)A種產(chǎn)品的生產(chǎn)件數(shù)為x, A、B兩種產(chǎn)品所獲總利潤(rùn)為y (元)
(1)試寫出y與x之間的函數(shù)關(guān)系式;
(2)求出自變量x的取值范圍;
(3)利用函數(shù)的性質(zhì)說(shuō)明哪種生產(chǎn)方案獲總利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)A(﹣1,0),B(5,0),C(0,- )三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將一副直角三角板放在同一條直線AB上,其中,.
將圖1中的三角尺OCD沿AB的方向平移至圖的位置,使得點(diǎn)O與點(diǎn)N重合,CD與MN相交于點(diǎn)E,求的度數(shù);
將圖1中的三角尺OCD繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn),使一邊OD在的內(nèi)部,如圖3,且OD恰好平分,CD與MN相交于點(diǎn)E,求的度數(shù);
將圖1中的三角尺OCD繞點(diǎn)O按每秒的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,在第______ 秒時(shí),邊CD恰好與邊MN平行;在第______ 秒時(shí),直線CD恰好與直線MN垂直直接寫出結(jié)果
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中點(diǎn),從D作DE⊥AC與CB的延長(zhǎng)線交于點(diǎn)E,以AB、BE為鄰邊作矩形ABEF,連結(jié)DF,則DF的長(zhǎng)是( )
A. 4 B. 3 C. 2 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店以4元/千克的價(jià)格購(gòu)進(jìn)一批水果,由于銷售狀況良好,該店又再次購(gòu)進(jìn)同一種水果,第二次進(jìn)貨價(jià)格比第一次每千克便宜了0.5元,所購(gòu)水果重量恰好是第一次購(gòu)進(jìn)水果重量的2倍,這樣該水果店兩次購(gòu)進(jìn)水果共花去了2200元.
(1)該水果店兩次分別購(gòu)買了多少元的水果?
(2)在銷售中,盡管兩次進(jìn)貨的價(jià)格不同,但水果店仍以相同的價(jià)格售出,若第一次購(gòu)進(jìn)的水果有3%的損耗,第二次購(gòu)進(jìn)的水果有5%的損耗,該水果店希望售完這些水果獲利不低于1244元,則該水果每千克售價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下是某網(wǎng)絡(luò)書店月關(guān)于圖書銷售情況的兩個(gè)統(tǒng)計(jì)圖:
()求月份該網(wǎng)絡(luò)書店繪本類圖書的銷售額.
()若已知月份與月份這兩個(gè)月的繪本類圖書銷售額相同,請(qǐng)補(bǔ)全統(tǒng)計(jì)圖.
()有以下兩個(gè)結(jié)論:
①該書店第一季度的銷售總額為萬(wàn)元.
②該書店月份到月份繪本類圖書銷售額的月增長(zhǎng)率相等.
請(qǐng)你判斷以上兩個(gè)結(jié)論是否正確,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com