精英家教網 > 初中數學 > 題目詳情

如圖,在平面直角坐標系中,⊙O的半徑為1,點P在經過點A(-4,0)、B(0,4)的直線上,PQ切⊙O于點Q,則切線長PQ的最小值為


  1. A.
    數學公式
  2. B.
    2數學公式
  3. C.
    3
  4. D.
    4
A
分析:連接OP.根據勾股定理知PQ2=OP2-OQ2,因為OQ是定值,所以當OP⊥AB時,線段OP最短,即線段PQ最短.
解答:解:連接OP、OQ.
∵PQ是⊙O的切線,
∴OQ⊥PQ;
根據勾股定理知PQ2=OP2-OQ2,
∵當PO⊥AB時,線段PQ最短;
又∵A(-4,0)、B(0,4),
∴OA=OB=4,
∴AB=4
∴OP=AB=2,
∴PQ=
故選A.
點評:本題考查了切線的判定與性質、坐標與圖形性質以及矩形的性質等知識點.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角來解決有關問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數點(橫、縱坐標均為整數)中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案