函數(shù)y=數(shù)學(xué)公式中x的取值范圍是________.

x≠0
分析:根據(jù)分式有意義的條件是分母不為0;即可解得答案.
解答:函數(shù)y=中,分母為x,則其的取值范圍是x≠0;
故答案為x≠0.
點評:本題主要考查分式有意義的條件,當(dāng)函數(shù)表達(dá)式是分式時,考慮分式的分母不能為0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

為了預(yù)防疾病,某單位對辦公室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如圖),現(xiàn)測得藥物8分鐘燃畢,此時室內(nèi)空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:
(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為
y=
3
4
x
y=
3
4
x
,自變量x的取值范為
0≤x≤8
0≤x≤8
;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為
y=
48
x
(x>8)
y=
48
x
(x>8)

(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時員工方可進(jìn)辦公室,那么從消毒開始,至少需要經(jīng)過
30
30
分鐘后,員工才能回到辦公室;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆河北省承德市九年級升學(xué)模擬考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖所示,制作一種產(chǎn)品,需將原材料加熱,設(shè)該材料溫度為y℃,從加熱開始計算的時間為x分鐘.據(jù)了解,該材料在加熱過程中溫度y與時間x成一次函數(shù)關(guān)系.已知該材料在加熱前的溫度為l5℃,加熱5分鐘使材料溫度達(dá)到60℃時停止加熱,停止加熱后,材料溫度逐漸下降,這時溫度y與時問x成反比例函數(shù)關(guān)系.
(1)分別求出該材料加熱和停止加熱過程中y與x的函數(shù)關(guān)系(要寫出x的取值范);
(2)根據(jù)工藝要求,在材料溫度不低于30℃的這段時間內(nèi),需要對該材料進(jìn)行特殊處理,那么對該材料進(jìn)行特殊處理所用的時間為多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省杭州市外國語學(xué)校中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

某商場經(jīng)營一批進(jìn)價為2元一件的小商品,在市場營銷中發(fā)現(xiàn)下商品的日銷售單價x元與日銷售量y件之間有如下關(guān)系:
x35911
y181462
(1)在所給的直角坐標(biāo)系①中
1)根據(jù)表中提供的數(shù)據(jù)描出實數(shù)對(x,y)的對應(yīng)點;
2)猜測并確定日銷售量y件與日銷售單價x元之間的函數(shù)關(guān)系式,并畫出圖象.
(2)設(shè)經(jīng)營此商品的日銷售利潤(不考慮其他因素)為P元,根據(jù)日銷售規(guī)律:
1)試求日銷售利潤P元與日銷售單價x元之間的函數(shù)關(guān)系式,并求出日銷售單價x為多少時,才能獲得最大日銷售利潤.試問日銷售利潤P是否存在最小值?若有,試求出,若無,請說明理由.
2)在給定的直角坐標(biāo)系(圖2)中,畫出日銷售利潤P元與日銷售單價x元之間的函數(shù)圖象的簡圖.觀察圖象,寫出x與P的取值范.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年湖南省長沙市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•長沙)某商場經(jīng)營一批進(jìn)價為2元一件的小商品,在市場營銷中發(fā)現(xiàn)下商品的日銷售單價x元與日銷售量y件之間有如下關(guān)系:
x35911
y181462
(1)在所給的直角坐標(biāo)系①中
1)根據(jù)表中提供的數(shù)據(jù)描出實數(shù)對(x,y)的對應(yīng)點;
2)猜測并確定日銷售量y件與日銷售單價x元之間的函數(shù)關(guān)系式,并畫出圖象.
(2)設(shè)經(jīng)營此商品的日銷售利潤(不考慮其他因素)為P元,根據(jù)日銷售規(guī)律:
1)試求日銷售利潤P元與日銷售單價x元之間的函數(shù)關(guān)系式,并求出日銷售單價x為多少時,才能獲得最大日銷售利潤.試問日銷售利潤P是否存在最小值?若有,試求出,若無,請說明理由.
2)在給定的直角坐標(biāo)系(圖2)中,畫出日銷售利潤P元與日銷售單價x元之間的函數(shù)圖象的簡圖.觀察圖象,寫出x與P的取值范.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

 函數(shù)中自變量的取值范是          

查看答案和解析>>

同步練習(xí)冊答案