(2005•青島)如圖,在Rt△ABC中,∠C=90°,AC=BC=a,分別以A、B、C為圓心,以AC為半徑畫弧,三條弧與邊AB所圍成的陰影部分面積為   
【答案】分析:根據(jù)圖象可清楚的得出陰影部分的面積為△ABC和三個扇形的面積差,而個扇形的半徑都相等,且圓心角的度數(shù)和正好是△ABC的內(nèi)角和,因此三個扇形的面積和正好是個半圓.由此可求得陰影部分的面積.
解答:解:∵∠C=90°,AC=BC=a,
∴△ABC是等腰直角三角形,
三個扇形的圓心角之和為180°,
∴三個扇形的總面積S扇形=×(2π,
∵S△ABC=AC•BC=a2
∴陰影部分面積=S△ABC-S扇形=a2-×(2π=
點(diǎn)評:本題主要考查了等腰直角三角形的性質(zhì)、三角形的內(nèi)角和定理,扇形的面積公式等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《四邊形》(06)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動點(diǎn)P以2米/秒的速度從點(diǎn)A出發(fā),沿AC向點(diǎn)C移動,同時動點(diǎn)Q以1米/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B移動,設(shè)P、Q兩點(diǎn)移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時間t的關(guān)系式;
(2)在P、Q兩點(diǎn)移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點(diǎn)P的位置;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動點(diǎn)P以2米/秒的速度從點(diǎn)A出發(fā),沿AC向點(diǎn)C移動,同時動點(diǎn)Q以1米/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B移動,設(shè)P、Q兩點(diǎn)移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時間t的關(guān)系式;
(2)在P、Q兩點(diǎn)移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點(diǎn)P的位置;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動點(diǎn)P以2米/秒的速度從點(diǎn)A出發(fā),沿AC向點(diǎn)C移動,同時動點(diǎn)Q以1米/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B移動,設(shè)P、Q兩點(diǎn)移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時間t的關(guān)系式;
(2)在P、Q兩點(diǎn)移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點(diǎn)P的位置;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年四川省新課標(biāo)中考數(shù)學(xué)模擬試卷(3)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動點(diǎn)P以2米/秒的速度從點(diǎn)A出發(fā),沿AC向點(diǎn)C移動,同時動點(diǎn)Q以1米/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B移動,設(shè)P、Q兩點(diǎn)移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時間t的關(guān)系式;
(2)在P、Q兩點(diǎn)移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點(diǎn)P的位置;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山東省青島市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•青島)如圖,在矩形ABCD中,AB=6米,BC=8米,動點(diǎn)P以2米/秒的速度從點(diǎn)A出發(fā),沿AC向點(diǎn)C移動,同時動點(diǎn)Q以1米/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B移動,設(shè)P、Q兩點(diǎn)移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時間t的關(guān)系式;
(2)在P、Q兩點(diǎn)移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點(diǎn)P的位置;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案