(2008•呼和浩特)將圖中的矩形ABCD沿對角線AC剪開,再把△ABC沿著AD方向平移,得到圖2中的△A′B′C′,其中E是A′B′與AC的交點,F(xiàn)是A′C′與CD的交點.在圖中除△ADC與△C′B′A′全等外,還有幾對全等三角形(不添加輔助線和字母)請一一指出,并選擇其中一對證明.
分析:本題是開放題,應(yīng)先確定選擇哪對三角形,再對應(yīng)三角形全等條件求解.三角形全等條件中必須是三個元素,并且一定有一組對應(yīng)邊相等.
解答:解:(1)△AA'E≌△C'CF
(2)△A'DF≌△CB'E

證明:(1)∵四邊形ABCD是矩形
∴AD∥BC
∴∠DAC=∠ACB
由平移的性質(zhì)得:∠ACB=∠C',AA'=CC',∠AA'E=∠C'CF=90°
∴∠DAC=∠C′
∴△AA'E≌△C'CF

(2)∵四邊形ABCD是矩形
∴AD=B'C',且∠DAC=∠ACB
由平移的性質(zhì)得:AA'=CC',∠D=∠B'=90°,∠ACB=∠C'
∴A'D=B'C
又∠DA'F=∠C',∠ECB'=∠DAC
∴∠DA'F=∠ECB'
∴△A'DF≌△CB'E
點評:本題重點考查了三角形全等的判定定理,普通兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,無法證明三角形全等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2008•呼和浩特)如圖,已知二次函數(shù)圖象的頂點坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標(biāo)為(,),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點.
(1)求k,m的值及這個二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的三角形與△BOF相似?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2008•呼和浩特)如圖,正方形OABC的面積為4,點O為坐標(biāo)原點,點B在函數(shù)y=(k<0,x<0)的圖象上,點P(m,n)是函數(shù)y=(k<0,x<0)的圖象上異于B的任意一點,過點P分別作x軸、y軸的垂線,垂足分別為E,F(xiàn).
(1)設(shè)矩形OEPF的面積為S1,試判斷S1是否與點P的位置有關(guān);(不必說明理由)
(2)從矩形OEPF的面積中減去其與正方形OABC重合的面積,剩余面積記為S2,寫出S2與m的函數(shù)關(guān)系,并標(biāo)明m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年內(nèi)蒙古呼和浩特市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•呼和浩特)如圖,已知二次函數(shù)圖象的頂點坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標(biāo)為(),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點.
(1)求k,m的值及這個二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的三角形與△BOF相似?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年內(nèi)蒙古呼和浩特市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•呼和浩特)如圖,正方形OABC的面積為4,點O為坐標(biāo)原點,點B在函數(shù)y=(k<0,x<0)的圖象上,點P(m,n)是函數(shù)y=(k<0,x<0)的圖象上異于B的任意一點,過點P分別作x軸、y軸的垂線,垂足分別為E,F(xiàn).
(1)設(shè)矩形OEPF的面積為S1,試判斷S1是否與點P的位置有關(guān);(不必說明理由)
(2)從矩形OEPF的面積中減去其與正方形OABC重合的面積,剩余面積記為S2,寫出S2與m的函數(shù)關(guān)系,并標(biāo)明m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案