【題目】一元二次方程x2﹣4x+4=0的根的情況是( )
A.有兩個(gè)不相等的實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.無(wú)實(shí)數(shù)根
D.無(wú)法確定

【答案】B
【解析】解:在方程x2﹣4x+4=0中,
△=(﹣4)2﹣4×1×4=0,
∴該方程有兩個(gè)相等的實(shí)數(shù)根.
故選B.
將方程的系數(shù)代入根的判別式中,得出△=0,由此即可得知該方程有兩個(gè)相等的實(shí)數(shù)根.本題考查了根的判別式,解題的關(guān)鍵是代入方程的系數(shù)求出△=0.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),根據(jù)根的判別式得正負(fù)確定方程解得個(gè)數(shù)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1+∠2=180°,∠B=∠3,你能判斷∠C∠AED的大小關(guān)系嗎?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列運(yùn)算中,正確的是( )
A.3a+2b=5ab
B.2a3+3a2=5a5
C.5a2﹣4a2=1
D.5a2b﹣5ba2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先簡(jiǎn)化,再求值:(4a23a)(2a+a1)+(2a24a),其中a=﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球隊(duì)在一次聯(lián)賽中共進(jìn)行了10場(chǎng)比賽,已知10場(chǎng)比賽的平均得分為88分,且前9場(chǎng)比賽的得分依次為:97、91、85、91、84、86、85、82、88.
(1)求第10場(chǎng)比賽的得分;
(2)求這10場(chǎng)比賽得分的中位數(shù),眾數(shù)和方差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我市開(kāi)展的“‘新華杯’中學(xué)雙語(yǔ)課外閱讀”活動(dòng)中,某中學(xué)為了解八年級(jí)400名學(xué)生讀書(shū)情況,隨機(jī)調(diào)查了八年級(jí)50名學(xué)生讀書(shū)的冊(cè)數(shù).統(tǒng)計(jì)數(shù)據(jù)如下表所示:

冊(cè)數(shù)

0

1

2

3

4

人數(shù)

2

10

15

17

6

(1)求這50個(gè)樣本數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)根據(jù)樣本數(shù)據(jù),估計(jì)該校八年級(jí)400名學(xué)生在本次活動(dòng)中讀書(shū)多于2冊(cè)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是( 。

A. 3a2a1B. 3mn2nmmn

C. 3a2+5a28a4D. x2y2xy2=﹣xy2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班為了從甲、乙兩同學(xué)中選出班長(zhǎng),進(jìn)行了一次演講答辯和民主測(cè)評(píng),A、B、C、D、E五位老師作為評(píng)委,對(duì)“演講答辯”情況進(jìn)行了評(píng)價(jià),全班50位同學(xué)參與了民主測(cè)評(píng),結(jié)果如下表:
表一 演講答辯得分

表二 民主測(cè)評(píng)得票

規(guī)則:①演講答辯得分按“去掉一個(gè)最高分和一個(gè)最低分后,再算出平均分”的方法確定;②民主測(cè)評(píng)得分=“好”票數(shù)×2分+“較好”票數(shù)×1分+“一般”票數(shù)×0分;③演講答辯得分和民主測(cè)評(píng)得分按4:6確定權(quán)重,計(jì)算綜合得分,請(qǐng)你計(jì)算一下甲、乙的綜合得分,選出班長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.

【類(lèi)比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時(shí),仍有EF=BE+FD.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng)(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)

查看答案和解析>>

同步練習(xí)冊(cè)答案