如圖,在直角坐標(biāo)系中,以點A(,0)為圓心,以為半徑圓與x軸相交于點B,C,與y軸相交于點D,E.

(1)若拋物線y=x2+bx+c經(jīng)過點C,D兩點,求拋物線的解析式,并判斷點B是否在該拋物線上。

(2)在(1)中的拋物線的對稱軸上有一點P,使得△PBD的周長最小,求點P的坐標(biāo)。

(3)設(shè)Q為(1)中的拋物線的對稱軸上的一點,在拋物線上是否存在這樣的點M,使得四邊形BCQM是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,說明理由.

解:(1),

     ,

     又在中,

     

     的坐標(biāo)為

    又D,C兩點在拋物線上,

     解得

     拋物線的解析式為:

     當(dāng)時,

     在拋物線上

   。2)

        

       拋物線的對稱軸方程為

       在拋物線的對稱軸上存在點P,使的周長最。

       的長為定值   要使周長最小只需最。

       連結(jié)DC,則DC與對稱軸的交點即為使周長最小的點.

       設(shè)直線DC的解析式為

       由

       直線DC的解析式為

       由

       故點P的坐標(biāo)為

    。3)存在,設(shè)為拋物線對稱軸上一點,在拋物線上要使四邊形為平行四邊形,則,點在對稱軸的左側(cè).

      于是,過點作直線與拋物線交于點

      由

      從而

      故在拋物線上存在點,使得四邊形為平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點P的坐標(biāo)為(3,4),將OP繞原點O逆時針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,O為原點.反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點A,點A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點A的坐標(biāo);
(2)如果經(jīng)過點A的一次函數(shù)圖象與x軸的負(fù)半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
(3)點D在反比例函數(shù)y=
6
x
的圖象上,且點D在直線AC的右側(cè),作DE⊥x軸于點E,當(dāng)△ABC與△CDE相似時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊答案