7.情景再現(xiàn)
通過(guò)“活動(dòng) 思考”一節(jié)的學(xué)習(xí),小紅知道了:把一張長(zhǎng)方形紙片按下圖要求折疊、裁剪、展開(kāi),可以得到由長(zhǎng)方形裁剪出的一個(gè)最大正方形.
操作探究
聰明的小紅在學(xué)習(xí)了這一個(gè)知識(shí)后給出了一個(gè)“可裁長(zhǎng)方形”的定義:當(dāng)相鄰兩邊長(zhǎng)分別為1,a(a>1)的長(zhǎng)方形通過(guò)上述方法裁剪掉一個(gè)最大的正方形后,再在剩下的部分裁剪出一個(gè)最大的正方形,如此反復(fù),最后剩下的部分也是一個(gè)正方形,像這樣一類長(zhǎng)方形稱為可裁長(zhǎng)方形.并進(jìn)行了以下探索:
(1)當(dāng)一個(gè)可裁長(zhǎng)方形只經(jīng)過(guò)一次裁剪就可以得到全部正方形,則a的值為2;
(2)當(dāng)一個(gè)可裁長(zhǎng)方形只經(jīng)過(guò)兩次裁剪就可以得到全部正方形,則所有符合條件的a的值為1.5或3;
(3)當(dāng)一個(gè)可裁長(zhǎng)方形只經(jīng)過(guò)三次裁剪就可以得到全部正方形,畫(huà)出所有符合條件可裁長(zhǎng)方形,標(biāo)注出裁剪線,并在對(duì)應(yīng)的圖形下方寫(xiě)出a的值.
方法遷移
取一個(gè)自然數(shù),若它是奇數(shù),則乘以3加上1;若它是偶數(shù),則除以2,按此規(guī)則經(jīng)過(guò)若干步的計(jì)算最終可得到1.這個(gè)結(jié)論在數(shù)學(xué)上還沒(méi)有得到證明.但舉例驗(yàn)證都是正確的.例如:取自然數(shù)5.最少經(jīng)過(guò)下面5步運(yùn)算可得1,
即:5$\stackrel{×3+1}{→}$16$\stackrel{÷2}{→}$8$\stackrel{÷2}{→}$4$\stackrel{÷2}{→}$2$\stackrel{÷2}{→}$1,
(1)自然數(shù)12最少經(jīng)過(guò)9步運(yùn)算可得到1
(2)如果自然數(shù)m最少經(jīng)過(guò)7步運(yùn)算可得到1,則所有符合條件的m的值為128、21、20、3.

分析 操作探究(1)根據(jù)操作的方法可得a=2;
(2)當(dāng)一個(gè)可裁長(zhǎng)方形只經(jīng)過(guò)兩次裁剪就可以得到全部正方形,則所有符合條件的a的值為3個(gè)1或1為2個(gè)(a-1);
(3)結(jié)合(1)、(2)題作出圖形;
方法遷移(1)利用列舉法,嘗試最小的幾個(gè)非0自然數(shù),再結(jié)合“自然數(shù)5.最少經(jīng)過(guò)5步運(yùn)算可得1”,即可得出結(jié)論;
(2)首先根據(jù)題意,應(yīng)用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分類討論,判斷出所有符合條件的m的值為多少即可.

解答 解:操作探究:
(1)當(dāng)一個(gè)可裁長(zhǎng)方形只經(jīng)過(guò)一次裁剪就可以得到全部正方形,則a的值為2個(gè)1,
故答案為:2;
(2)當(dāng)一個(gè)可裁長(zhǎng)方形只經(jīng)過(guò)兩次裁剪就可以得到全部正方形,則所有符合條件的a的值為3個(gè)1或1為2個(gè)(a-1),
故答案為:1.5或3;
(3)當(dāng)一個(gè)可裁長(zhǎng)方形只經(jīng)過(guò)三次裁剪就可以得到全部正方形,畫(huà)出符合條件可裁長(zhǎng)方形如圖:

方法遷移:
(1)12$\stackrel{÷2}{→}$6$\stackrel{÷2}{→}$3$\stackrel{×3+1}{→}$10$\stackrel{÷2}{→}$5$\stackrel{×3+1}{→}$16$\stackrel{÷2}{→}$8$\stackrel{÷2}{→}$4$\stackrel{÷2}{→}$2$\stackrel{÷2}{→}$1,
自然數(shù)12最少經(jīng)過(guò)9步運(yùn)算可得到1,
故答案為:9;
(2)根據(jù)分析,可得

則所有符合條件的m的值為:128、21、20、3.
故答案為:128、21、20、3.

點(diǎn)評(píng) (1)此題主要考查了探尋數(shù)列規(guī)律問(wèn)題,考查了逆推法的應(yīng)用,注意觀察總結(jié)出規(guī)律,并能正確的應(yīng)用規(guī)律.
(2)此題還考查了推理和論證問(wèn)題,要熟練掌握,解答此題的關(guān)鍵是要明確:①演繹推理是從一般規(guī)律出發(fā),運(yùn)用邏輯證明或數(shù)學(xué)運(yùn)算,得出特殊事實(shí)應(yīng)遵循的規(guī)律,即從一般到特殊.②歸納推理就是從許多個(gè)別的事物中概括出一般性概念、原則或結(jié)論,即從特殊到一般.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,∠C=90°,tanA=$\frac{3}{4}$,那么sinA的值為( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{5}{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,
(1)求二次函數(shù)的解析式.
(2)設(shè)二次函數(shù)與x軸的另一個(gè)交點(diǎn)為D,并在拋物線的對(duì)稱軸上找一點(diǎn)P,使三角形PBD的周長(zhǎng)最小,求出點(diǎn)D和點(diǎn)P的坐標(biāo).
(3)在直線CD下方的拋物線上是否存在一點(diǎn)E,使得△DCE的面積最大,若有求出點(diǎn)E坐標(biāo)及面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知C,D過(guò)∠BCA頂點(diǎn)的一條直線,CA=CB,E,F(xiàn)是直線CD上的兩點(diǎn),且∠BEC=∠CFA.
(1)如圖(1),若∠BCA=90°,∠BEC=∠CFA=90°,則BE==CF(填“>”、“<”或“=”)
(2)如圖(2),∠BCA+∠BEC=180°,則(1)中的結(jié)論是否成立?為什么?
(3)如圖(3),若∠BEC=∠CFA=∠BCA,則線段EF,BE,AF之間有何數(shù)量關(guān)系?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.我國(guó)許多銀行的商標(biāo)設(shè)計(jì)中都融入了中國(guó)古代錢(qián)幣的圖案,下圖是我國(guó)四大銀行的商標(biāo)圖案,其中可以看做是軸對(duì)稱圖形的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖所示,二次函數(shù)y1=a(x-b)2的圖象與直線y2=kx+b交于A(0,-1)、B(1,0)兩點(diǎn).
(1)確定二次函數(shù)的解析式;
(2)當(dāng)y1<y2,y1=y2,y1>y2時(shí),根據(jù)圖象分別確定自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(0,2),點(diǎn)B是x軸上的一個(gè)動(dòng)點(diǎn),始終保持△ABC是等邊三角形(點(diǎn)A、B、C按逆時(shí)針排列),當(dāng)點(diǎn)B運(yùn)動(dòng)到原點(diǎn)O處時(shí),則點(diǎn)C的坐標(biāo)是($\sqrt{3}$,1).隨著點(diǎn)B在x軸上移動(dòng),點(diǎn)C也隨之移動(dòng),則點(diǎn)C移動(dòng)所得圖象的解析式是y=$\sqrt{3}$x-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.將一盛有不足半杯水的圓柱形玻璃水?dāng)Q緊杯蓋后放倒,水平放置在桌面上,水杯的底面如圖所示,已知水杯內(nèi)徑(圖中小圓的直徑)是8cm,水的最大深度是2cm,則杯底有水部分的面積是($\frac{16}{3}$π-4$\sqrt{3}$)cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

17.拋物線y=x2-2x-3與y軸的交點(diǎn)坐標(biāo)是(0,-3).

查看答案和解析>>

同步練習(xí)冊(cè)答案