△ABC為正三角形,點M是射線BC上任意一點,點N是射線CA上任意一點,且BM=CN,BN與AM相交于Q點,求∠AQN的度數(shù).
在△ABM和△BCN中,易證∠BCN=∠ABM=60º,CN=BM,又∵AB=AC,∴△ABM≌△BCN,∴∠BAM=∠CBN,
又∵∠AQN=∠BAQ+∠ABQ=∠NBC+∠ABQ=∠ABC=60º.∴∠AQN =∠ABC=60º解析:
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

25、△ABC為正三角形,點M是射線BC上任意一點,點N是射線CA上任意一點,且BM=CN,BN與AM相交于Q點,∠AQN等于多少度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、已知△ABC為正三角形,點M是射線BC上任意一點,點N是射線CA上任意一點,且BM=CN,直線BN與AM相交于點Q.下面給出了三種情況(如圖①,②,③),先用量角器分別測量∠BQM的大小,然后猜測∠BQM是否為定值并利用其中一圖證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知P是△ABC內(nèi)任意一點(如圖).
(1)求證:
12
(a+b+c)<PA+PB+PC<a+b+c;
(2)若△ABC為正三角形,且邊長為1,求證:PA+PB+PC<2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,設(shè)△ABC為正三角形,邊長為1,P,Q,R分別在AB,BC,AC邊上,且AR=BP=CQ=
13
.連A精英家教網(wǎng)Q,BR,CP兩兩相交得到△MNS,則△MNS的面積是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

△ABC為正三角形,點M是射線BC上任意一點,點N是射線CA上任意一點,且BM=CN,直線BN與AM相交于Q點,就下面給出的三種情況,如圖中的①②③,先用量角器分別測量∠BQM的大小,然后猜測∠BQM等于多少度.并利用圖③證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案