10.為了解學(xué)生對(duì)“大課間”的喜歡程度,現(xiàn)對(duì)某中學(xué)初中學(xué)生進(jìn)行了一次問卷調(diào)查,具體情況如下:
喜歡程度非常喜歡喜歡不喜歡
人數(shù)600人100人
①已知該校七年級(jí)共有480人,求該校初中學(xué)生總數(shù),并補(bǔ)全如圖;
②求該校八年級(jí)學(xué)生人數(shù)及其扇形的圓心角度數(shù).
③請(qǐng)計(jì)算不喜歡“大課間”的學(xué)生的頻率,并對(duì)不喜歡“大課間”的同學(xué)提出一條建議,希望能通過你的建議讓他喜歡上“大課間”.

分析 ①由總?cè)藬?shù)=某年級(jí)人數(shù)÷所占比例計(jì)算;
②由百分比的和為1計(jì)算八年級(jí)學(xué)生人數(shù)的比例,再由百分比×360°=等于該部分所對(duì)應(yīng)的扇形圓心的度數(shù)計(jì)算圓心角;
③不喜歡的人數(shù)除以總?cè)藬?shù)求出頻率;提出有益建議即可.

解答 解:①初中學(xué)生總數(shù)=480÷40%=1200人;圖2中喜歡的人數(shù)為500人;如圖所示:
②八年級(jí)學(xué)生人數(shù)占的比例=1-28%-40%=32%,八年級(jí)學(xué)生人數(shù)=1200×32%=384人;      
在扇形統(tǒng)計(jì)圖中的圓心角=360°×32%=115.2°;
③不喜歡的學(xué)生頻率為:$\frac{100}{1200}$=$\frac{1}{12}$;
建議:大課間能是你勞逸結(jié)合,活躍思維,增長(zhǎng)智慧.

點(diǎn)評(píng) 本題考查的是扇形統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問題的關(guān)鍵.扇形統(tǒng)計(jì)圖直接反映部分占總體的百分比大。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.下列關(guān)于x的方程一定是一元二次方程的是( 。
A.ax2+bx+c=0B.x2+bx+c=0C.x2+$\frac{x}$+c=0D.cx+b+x3=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.已知圓錐的側(cè)面積等于60πcm2,母線長(zhǎng)10cm,則圓錐的底面半徑是6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠BOC=70°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE=20°;
(2)如圖②,將直角三角板DOE繞點(diǎn)O逆時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若OC恰好平分∠BOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點(diǎn)O轉(zhuǎn)動(dòng),如果OD始終在∠BOC的內(nèi)部,試猜想∠BOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示,把一張矩形紙片對(duì)折兩次,然后剪下一個(gè)角,為了得到一個(gè)正方形,剪刀與折痕所成的角的度數(shù)應(yīng)為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,直線AB、CD交于點(diǎn)O,OP平分∠BOC,若∠AOD=104°,則∠POD等于( 。
A.52°B.104°C.120°D.128°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.已知菱形ABCD對(duì)角線AC=8,BD=4,以AC、BD所在的直線為x軸、y軸建立平面直角坐標(biāo)系,雙曲線y=$\frac{k}{x}$恰好經(jīng)過DC的中點(diǎn),過直線BC上的點(diǎn)P作直線l⊥x軸,交雙曲線于點(diǎn)Q.
(1)求k的值及直線BC的函數(shù)解析式;
(2)雙曲線y=$\frac{k}{x}$與直線BC交于M、N兩點(diǎn),試求線段MN的長(zhǎng);
(3)是否存在點(diǎn)P,使以點(diǎn)B、P、Q、D四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出所有P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,點(diǎn)E,C在線段BF上,且BE=CF,若AB=DE,要使△ABC≌△DEF,還需要添加的一個(gè)條件是( 。
A.∠ACB=∠DFEB.∠A=∠DC.AC∥DFD.∠B=∠DEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在平面直角坐標(biāo)系中,已知A、B、C三點(diǎn)的坐標(biāo)分別為A(-2,0),B(6,0),C(0,-3).
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)過C點(diǎn)作CD平行于x軸交拋物線于點(diǎn)D,寫出D點(diǎn)的坐標(biāo),并求AD、BC的交點(diǎn)E的坐標(biāo);
(3)若拋物線的頂點(diǎn)為P,連結(jié)PC、PD.
①判斷四邊形CEDP的形狀,并說明理由;
②若在拋物線上存在點(diǎn)Q,使直線OQ將四邊形PCED分成面積相等的兩個(gè)部分,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案