【題目】若拋物線(xiàn)L:(a,b,c是常數(shù),abc≠0)與直線(xiàn)l都經(jīng)過(guò)y軸上的一點(diǎn)P,且拋物線(xiàn)L的頂點(diǎn)Q在直線(xiàn)l上,則稱(chēng)此直線(xiàn)l與該拋物線(xiàn)L具有“一帶一路”關(guān)系.此時(shí),直線(xiàn)l叫做拋物線(xiàn)L的“帶線(xiàn)”,拋物線(xiàn)L叫做直線(xiàn)l的“路線(xiàn)”.
(1)若直線(xiàn)y=mx+1與拋物線(xiàn)具有“一帶一路”關(guān)系,求m,n的值;
(2)若某“路線(xiàn)”L的頂點(diǎn)在反比例函數(shù)的圖象上,它的“帶線(xiàn)”l的解析式為y=2x﹣4,求此“路線(xiàn)”L的解析式;
(3)當(dāng)常數(shù)k滿(mǎn)足≤k≤2時(shí),求拋物線(xiàn)L:的“帶線(xiàn)”l與x軸,y軸所圍成的三角形面積的取值范圍.
【答案】(1)m=﹣1,n=1;(2)或;(3)≤S≤.
【解析】
試題分析:(1)找出直線(xiàn)y=mx+1與y軸的交點(diǎn)坐標(biāo),將其代入拋物線(xiàn)解析式中即可求出n的值;再根據(jù)拋物線(xiàn)的解析式找出頂點(diǎn)坐標(biāo),將其代入直線(xiàn)解析式中即可得出結(jié)論;
(2)找出直線(xiàn)與反比例函數(shù)圖象的交點(diǎn)坐標(biāo),由此設(shè)出拋物線(xiàn)的解析式,再由直線(xiàn)的解析式找出直線(xiàn)與x軸的交點(diǎn)坐標(biāo),將其代入拋物線(xiàn)解析式中即可得出結(jié)論;
(3)由拋物線(xiàn)解析式找出拋物線(xiàn)與y軸的交點(diǎn)坐標(biāo),再根據(jù)拋物線(xiàn)的解析式找出其頂點(diǎn)坐標(biāo),由兩點(diǎn)坐標(biāo)結(jié)合待定系數(shù)法即可得出與該拋物線(xiàn)對(duì)應(yīng)的“帶線(xiàn)”l的解析式,找出該直線(xiàn)與x、y軸的交點(diǎn)坐標(biāo),結(jié)合三角形的面積找出面積S關(guān)于k的關(guān)系上,由二次函數(shù)的性質(zhì)即可得出結(jié)論.
試題解析:(1)令直線(xiàn)y=mx+1中x=0,則y=1,即直線(xiàn)與y軸的交點(diǎn)為(0,1);
將(0,1)代入拋物線(xiàn)中,得n=1.
∵拋物線(xiàn)的解析式為=,∴拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(1,0).
將點(diǎn)(1,0)代入到直線(xiàn)y=mx+1中,得:0=m+1,解得:m=﹣1.
答:m=﹣1,n=1.
(2)將y=2x﹣4代入到中有,2x﹣4=,即,解得:,,∴該“路線(xiàn)”L的頂點(diǎn)坐標(biāo)為(﹣1,﹣6)或(3,2).
令“帶線(xiàn)”l:y=2x﹣4中x=0,則y=﹣4,∴“路線(xiàn)”L的圖象過(guò)點(diǎn)(0,﹣4).
設(shè)該“路線(xiàn)”L的解析式為或,由題意得:或,解得:m=2,n=,∴此“路線(xiàn)”L的解析式為或.
(3)令拋物線(xiàn)L:中x=0,則y=k,即該拋物線(xiàn)與y軸的交點(diǎn)為(0,k).
拋物線(xiàn)L:的頂點(diǎn)坐標(biāo)為(,),設(shè)“帶線(xiàn)”l的解析式為y=px+k,∵點(diǎn)(,)在y=px+k上,∴,解得:p=,∴“帶線(xiàn)”l的解析式為.
令∴“帶線(xiàn)”l:中y=0,則,解得:x=.
即“帶線(xiàn)”l與x軸的交點(diǎn)為(,0),與y軸的交點(diǎn)為(0,k),∴“帶線(xiàn)”l與x軸,y軸所圍成的三角形面積S=====,∵≤k≤2,∴≤≤2,∴S=,當(dāng)=1時(shí),S有最大值,最大值為;當(dāng)=2時(shí),S有最小值,最小值為.
故拋物線(xiàn)L:y=ax2+(3k2﹣2k+1)x+k的“帶線(xiàn)”l與x軸,y軸所圍成的三角形面積的取值范圍為≤S≤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下問(wèn)題,不適合用全面調(diào)查的是( )
A. 了解全班同學(xué)每周體育鍛煉的時(shí)間
B. 調(diào)查七年級(jí)(1)班學(xué)生的某次數(shù)學(xué)考試成績(jī)
C. 調(diào)查某班學(xué)生的身高
D. 了解全市中小學(xué)生每天的零花錢(qián)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:如圖,點(diǎn)A,D,B,E在同一條直線(xiàn)上,且AD=BE,∠A=∠FDE,則△ABC≌△DEF.判斷這個(gè)命題是真命題還是假命題,如果是真命題,請(qǐng)給出證明;如果是假命題,請(qǐng)?zhí)砑右粋(gè)適當(dāng)條件使它成為真命題,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,由若干個(gè)完全相同的小正方體堆成的一個(gè)幾何體放置在平整的地面上.
(1)請(qǐng)畫(huà)出這個(gè)幾何體的三視圖.
(2)如果在這個(gè)幾何體的表面噴上紅色的漆,則在所有的小正方體中,有個(gè)小正方體只有一個(gè)面是紅色,有個(gè)小正方體只有兩個(gè)面是紅色,有個(gè)小正方體只有三個(gè)面是紅色.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)計(jì)一張折疊型方桌子如圖,若AO=BO=50cm,CO=DO=30cm,將桌子放平后,要使AB距離地面的高為40cm,則兩條桌腿需要叉開(kāi)的∠AOB應(yīng)為( )
A.60°
B.90°
C.120°
D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c圖象上部分點(diǎn)的坐標(biāo)滿(mǎn)足下表:
x | … | -3 | -2 | -1 | 0 | 1 | … |
y | … | -3 | -2 | -3 | -6 | -11 | … |
則該函數(shù)圖象上的點(diǎn)(﹣6,y1),(m2+2m+3,y2)則下列選項(xiàng)正確的是( 。
A.y1>y2B.y1≥y2C.y1<y2D.y1≤y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點(diǎn),DE⊥BC,CE∥AD,若AC=2,CE=4,則四邊形ACEB的周長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為一邊向外作等邊三角形ACD,點(diǎn)E為AB的中點(diǎn),連結(jié)DE.
(1)證明DE∥CB;
(2)探索AC與AB滿(mǎn)足怎樣的數(shù)量關(guān)系時(shí),四邊形DCBE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃從甲、乙兩種產(chǎn)品中選擇一種生產(chǎn)并銷(xiāo)售,每年產(chǎn)銷(xiāo)x件.已知產(chǎn)銷(xiāo)兩種產(chǎn)品的有關(guān)信息如表:
其中a為常數(shù),且3≤a≤5.
(1)若產(chǎn)銷(xiāo)甲、乙兩種產(chǎn)品的年利潤(rùn)分別為萬(wàn)元、萬(wàn)元,直接寫(xiě)出、與x的函數(shù)關(guān)系式;
(2)分別求出產(chǎn)銷(xiāo)兩種產(chǎn)品的最大年利潤(rùn);
(3)為獲得最大年利潤(rùn),該公司應(yīng)該選擇產(chǎn)銷(xiāo)哪種產(chǎn)品?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com