已知:如圖,AB是⊙O的弦,∠OAB=45°,C是優(yōu)弧AB上一點(diǎn),BD∥OA,交CA延長線于點(diǎn)D,連接BC.
(1)求證:BD是⊙O的切線;
(2)若AC=,∠CAB=75°,求⊙O的半徑.

【答案】分析:(1)連接OB,如圖.根據(jù)題意得,∠1=∠OAB=45°.由AO∥DB,得∠2=∠OAB=45°.則∠1+∠2=90°.即BD⊥OB于B.從而得出CD是⊙O的切線.
(2)作OE⊥AC于點(diǎn)E.由OE⊥AC,AC=,求得AE,由∠BAC=75°,∠OAB=45°,得出∠3.在Rt△OAE中,求得OA即可.
解答:(1)證明:連接OB,如圖.
∵OA=OB,∠OAB=45°,
∴∠1=∠OAB=45°.
∵AO∥DB,
∴∠2=∠OAB=45°.
∴∠1+∠2=90°.
∴BD⊥OB于B.
∴又點(diǎn)B在⊙O上.
∴BD是⊙O的切線.

(2)解:作OE⊥AC于點(diǎn)E.
∵OE⊥AC,AC=,
∴AE==
∵∠BAC=75°,∠OAB=45°,
∴∠3=∠BAC-∠OAB=30°.
∴在Rt△OAE中,
解法二:如圖
延長AO與⊙O交于點(diǎn)F,連接FC.
∴∠ACF=90°.
在Rt△ACF中,
∴AO==4.
點(diǎn)評:本以考查了切線的判定和性質(zhì),以及解直角三角形,是基礎(chǔ)知識要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、已知:如圖,AB是⊙O的直徑,BC是和⊙O相切于點(diǎn)B的切線,⊙O的弦AD平行于OC.
求證:DC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)一模)已知:如圖,AB是⊙O的直徑,AC是⊙O的弦,M為AB上一點(diǎn),過點(diǎn)M作DM⊥AB,交弦AC于點(diǎn)E,交⊙O于點(diǎn)F,且DC=DE.
(1)求證:DC是⊙O的切線;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點(diǎn)C,AD⊥MN于D,AD交⊙O于E,AB的延長線交MN于點(diǎn)P.求證:AC2=AE•AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•平谷區(qū)二模)已知,如圖,AB是⊙O的直徑,點(diǎn)E是
AD
的中點(diǎn),連接BE交AC于點(diǎn)G,BG的垂直平分線CF交BG于H交AB于F點(diǎn).
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB是⊙O的直徑,BC為⊙O的切線,過點(diǎn)B的弦BD⊥OC交⊙O于點(diǎn)D,垂足為E.
(1)求證:CD是⊙O的切線;
(2)當(dāng)BC=BD,且BD=12cm時(shí),求圖中陰影部分的面積(結(jié)果不取近似值).

查看答案和解析>>

同步練習(xí)冊答案