分析 (1)由圓周角定理得出∠ABC=∠ADC=90°,∠BAD=∠BCD=90°,即可得出四邊形ABCD是矩形;
(2)由AAS證明△BOE≌△COF,得出對(duì)應(yīng)邊相等即可.
解答 (1)解:四邊形ABCD是矩形.理由如下:
∵AC與BD是圓的直徑,
∴∠ABC=∠ADC=90°,∠BAD=∠BCD=90°,
∴四邊形ABCD是矩形;
(2)證明:∵BO=CO,
又∵BE⊥AC于E,CF⊥BD于F,
∴∠BEO=∠CFO=90°.
在△BOE和△COF中,$\left\{\begin{array}{l}{∠BEO=∠CFO}&{\;}\\{∠BOE=∠COF}&{\;}\\{OB=OC}&{\;}\end{array}\right.$,
∴△BOE≌△COF(AAS).
∴BE=CF.
點(diǎn)評(píng) 本題考查了圓周角定理、矩形的判定、全等三角形的判定與性質(zhì);熟練掌握?qǐng)A周角定理,證明三角形全等是解決問題(2)的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年江蘇省八年級(jí)下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)請(qǐng)直接寫出點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo):______
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°.畫出圖形,直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo):___________
(3)請(qǐng)直接寫出以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo):____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年江蘇省八年級(jí)下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:單選題
如圖,在□ABCD中,∠ODA= 90°,AC=10 cm,BD=6 cm,則BC的長(zhǎng)為( )
A. 4 cm B. 5 cm C. 6 cm D. 8 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (a5)2=a7 | B. | 2x-2=$\frac{1}{2{x}^{2}}$ | C. | 3a2•2a3=6a5 | D. | a6÷a6=0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com