【題目】如圖,在邊長為 的正方形ABCD中,動(dòng)點(diǎn)F,E分別以相同的速度從D,C兩點(diǎn)同時(shí)出發(fā)向C和B運(yùn)動(dòng)(任何一個(gè)點(diǎn)到達(dá)即停止),在運(yùn)動(dòng)過程中,則線段CP的最小值為 .
【答案】 .
【解析】如圖,
,
∵動(dòng)點(diǎn)F,E的速度相同,
∴DF=CE,
又∵CD=BC,
∴CF=BE,
在△ABE和△BCF中,
∴△ABE≌△BCF,
∴∠BAE=∠CBF,
∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠APB=90°,
∵點(diǎn)P在運(yùn)動(dòng)中保持∠APB=90°,
∴點(diǎn)P的路徑是一段以AB為直徑的弧,
設(shè)AB的中點(diǎn)為G,連接CG交弧于點(diǎn)P,此時(shí)CP的長度最小,
在Rt△BCG中,CG= ,
∵PG=
∴CP=CG-PG= ,
即線段CP的最小值為 .
【考點(diǎn)精析】通過靈活運(yùn)用正方形的性質(zhì),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式,屬于二元一次方程的個(gè)數(shù)有( )
①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2;⑥6x﹣2y;⑦x+y+z=1;⑧y(y﹣1)=2x2﹣y2+xy
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線y=﹣ x+8,與x軸、y軸分別交于點(diǎn)A、C,以AC為對(duì)角線作矩形OABC,點(diǎn)P、Q分別為射線OC、射線AC上的動(dòng)點(diǎn),且有AQ=2CP,連結(jié)PQ,設(shè)點(diǎn)P的坐標(biāo)為P(0,t).
(1)求點(diǎn)B的坐標(biāo).
(2)若t=1時(shí),連接BQ,求△ABQ的面積.
(3)如圖2,以PQ為直徑作⊙I,記⊙I與射線AC的另一個(gè)交點(diǎn)為E.
①若 = ,求此時(shí)t的值.
②若圓心I在△ABC內(nèi)部(不包含邊上),則此時(shí)t的取值范圍為是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】遂寧市明星水利為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行加價(jià)收費(fèi),為更好地做決策,自來水公司隨機(jī)抽取部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)包括最大值但不包括最小值),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解決下列問題:
(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?
(2)補(bǔ)全左側(cè)統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中“25噸~30噸”部分的圓心角度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,M是定長線段AB上一定點(diǎn),C、D兩點(diǎn)分別從M、B出發(fā)以1cm/s、3cm/s的速度沿直線BA向左運(yùn)動(dòng),運(yùn)動(dòng)方向如箭頭所示(C在線段AM上,D在線段BM上)
(1)若AB=10cm,當(dāng)點(diǎn)C、D運(yùn)動(dòng)了2s,求AC+MD的值.
(2)若點(diǎn)C、D運(yùn)動(dòng)時(shí),總有MD=3AC,直接填空:AM= AB.
(3)在(2)的條件下,N是直線AB上一點(diǎn),且AN-BN=MN,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F.
(1)求證:AB=AC;
(2)若DC=4,∠DAC=30°,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”所示我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗,我市某食品廠為了解市民對(duì)去年銷售較好的肉餡棕、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不用口味粽子的喜愛情況,在節(jié)前對(duì)某居民區(qū)進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).
請(qǐng)根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛吃D粽的人數(shù);
(4)若有外型完全相同的A、B、C、D粽各一個(gè),煮熟后,小王吃了兩個(gè),用列表或畫樹狀圖的方法,求他第二個(gè)恰好吃到的是C粽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△AOB中,AO=BO=2,點(diǎn)A在x軸上,OB與x軸的夾角為45°;
(1)求直線AB、OB的解析式;
(2)若將△AOB沿著x軸翻折再向右平移兩個(gè)單位求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1= (x+1)2+1與y2=a(x﹣4)2﹣3交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于B、C兩點(diǎn),且D、E分別為頂點(diǎn).則下列結(jié)論:①a= ;②AC=AE;③△ABD是等腰直角三角形;④當(dāng)x>1時(shí),y1>y2.其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com