【題目】若規(guī)定這樣一種運算:a△b=(|ab|+a+b),例如:2△3=(|23|+2+3)=3
(1)求3△4和(-3)△(-2)的值;
(2)將1,2,3,…,50這50個自然數(shù),任意分為25組,每組兩個數(shù),現(xiàn)將每組的兩個數(shù)中任一數(shù)值記作a,另一個記作b,代入代數(shù)式(|ab|+a+b)中進行計算,求出其結果,25組數(shù)代入后可求得25個值,求這25個值的和的最大值是_____.
【答案】(1)3△4=4,(-3)△(-2)=-2;(2)這25個值的和的最大值為950.
【解析】
(1)根據(jù)新定義的運算法則,進行計算即可;
(2)不妨設各組中的數(shù)的a比b大,然后去掉絕對值號化簡為b,所以當25組中的較小的數(shù)恰好是1到25時,這25個值的和最大,再根據(jù)求和公式列式計算即可得解.
解:(1)3△4=(|34|+3+4)=4,
(-3)△(-2)=[|-3(-2)|+(-3)+(-2)]=-2;
(2)假設a>b,則(|ab|+a+b)=(a-b+a+b)=a,
∴當25組中的較大的數(shù)a恰好是26到50時,這25個值的和最大,
最大值為:26+27+28+…+50==950.
故答案為:950.
科目:初中數(shù)學 來源: 題型:
【題目】操作思考:如圖1,在平面直角坐標系中,等腰的直角頂點C在原點,將其繞著點O旋轉,若頂點A恰好落在點處則的長為______;點B的坐標為______直接寫結果
感悟應用:如圖2,在平面直角坐標系中,將等腰如圖放置,直角頂點,點,試求直線AB的函數(shù)表達式.
拓展研究:如圖3,在直角坐標系中,點,過點B作軸,垂足為點A,作軸,垂足為點C,P是線段BC上的一個動點,點Q是直線上一動點問是否存在以點P為直角頂點的等腰,若存在,請求出此時P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文化用品商店用2000元購進一批學生書包,面市后發(fā)現(xiàn)供不應求,商店又購進第二批同樣的書包,所購數(shù)量是第一批購進數(shù)量的3倍,但單價貴了4元,結果第二批用了6300元。
(1)求第一批購進書包的單價是多少元?
(2)若商店銷售這兩批書包時,每個售價都是120元,全部售出后,商店共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖像分別交y軸、x軸交于點A、B,點P從點B出發(fā),沿射線BA以每秒1個單位的速度出發(fā),設點P的運動時間為t秒.
(1)點P在運動過程中,若某一時刻,△OPA的面積為6,求此時P的坐標;
(2)在整個運動過程中,當t為何值時,△AOP為等腰三角形?(只需寫出t的值,無需解答過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究與發(fā)現(xiàn):
如圖1所示的圖形,像我們常見的學習用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關系,并說明理由;
(2)請你直接利用以上結論,解決以下三個問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點B、C,若∠A=50°,則∠ABX+∠ACX= °;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有理數(shù) a,b,c 分別對應數(shù)軸上的點 A,B,C,若a 2|b 4| 0 ,關于 x、y 的單項式3(c 3)x y與 yx 是同類項. 我們把數(shù)軸上兩點之間的距離用表示兩點的大寫字母一起標記,例如,點 A 與點 B 間的距離記作 AB.
(1)求 a,b,c 的值;
(2)點 P 從 C 點出發(fā)以每秒 1 個單位長度在數(shù)軸上按以下規(guī)律往返運動:第一回合,從點 C 到點 B 到點 A 回到點 C;第二回合,從點 C 到 BC 的中點 D 到 CA 的中點 D1 回到點 C;第三回合,從點 C 到 CD 的中點 D2 到 CD1 的中點 D3 回到點 C……,如此循環(huán)下去,若第 t 秒時滿足 PB+2PC=AC+1,求 t 的最大值;
(3)在(2)的條件下,P 點第一次從 C 點出發(fā)的同時,數(shù)軸上的動點 M、N 分別從 A 點和 B 點向右運動,速度分別為每秒 1 個單位長度和每秒 2 個單位長度,P 點完成第一個回合后停止在 C 點,當 MP=2MN 時, t 的值是 (直接填答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com