【題目】若規(guī)定這樣一種運(yùn)算:a△b=(|ab|+a+b),例如:2△3=(|23|+2+3)=3
(1)求3△4和(-3)△(-2)的值;
(2)將1,2,3,…,50這50個(gè)自然數(shù),任意分為25組,每組兩個(gè)數(shù),現(xiàn)將每組的兩個(gè)數(shù)中任一數(shù)值記作a,另一個(gè)記作b,代入代數(shù)式(|ab|+a+b)中進(jìn)行計(jì)算,求出其結(jié)果,25組數(shù)代入后可求得25個(gè)值,求這25個(gè)值的和的最大值是_____.
【答案】(1)3△4=4,(-3)△(-2)=-2;(2)這25個(gè)值的和的最大值為950.
【解析】
(1)根據(jù)新定義的運(yùn)算法則,進(jìn)行計(jì)算即可;
(2)不妨設(shè)各組中的數(shù)的a比b大,然后去掉絕對(duì)值號(hào)化簡(jiǎn)為b,所以當(dāng)25組中的較小的數(shù)恰好是1到25時(shí),這25個(gè)值的和最大,再根據(jù)求和公式列式計(jì)算即可得解.
解:(1)3△4=(|34|+3+4)=4,
(-3)△(-2)=[|-3(-2)|+(-3)+(-2)]=-2;
(2)假設(shè)a>b,則(|ab|+a+b)=(a-b+a+b)=a,
∴當(dāng)25組中的較大的數(shù)a恰好是26到50時(shí),這25個(gè)值的和最大,
最大值為:26+27+28+…+50==950.
故答案為:950.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作思考:如圖1,在平面直角坐標(biāo)系中,等腰的直角頂點(diǎn)C在原點(diǎn),將其繞著點(diǎn)O旋轉(zhuǎn),若頂點(diǎn)A恰好落在點(diǎn)處則的長為______;點(diǎn)B的坐標(biāo)為______直接寫結(jié)果
感悟應(yīng)用:如圖2,在平面直角坐標(biāo)系中,將等腰如圖放置,直角頂點(diǎn),點(diǎn),試求直線AB的函數(shù)表達(dá)式.
拓展研究:如圖3,在直角坐標(biāo)系中,點(diǎn),過點(diǎn)B作軸,垂足為點(diǎn)A,作軸,垂足為點(diǎn)C,P是線段BC上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q是直線上一動(dòng)點(diǎn)問是否存在以點(diǎn)P為直角頂點(diǎn)的等腰,若存在,請(qǐng)求出此時(shí)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文化用品商店用2000元購進(jìn)一批學(xué)生書包,面市后發(fā)現(xiàn)供不應(yīng)求,商店又購進(jìn)第二批同樣的書包,所購數(shù)量是第一批購進(jìn)數(shù)量的3倍,但單價(jià)貴了4元,結(jié)果第二批用了6300元。
(1)求第一批購進(jìn)書包的單價(jià)是多少元?
(2)若商店銷售這兩批書包時(shí),每個(gè)售價(jià)都是120元,全部售出后,商店共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像分別交y軸、x軸交于點(diǎn)A、B,點(diǎn)P從點(diǎn)B出發(fā),沿射線BA以每秒1個(gè)單位的速度出發(fā),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)點(diǎn)P在運(yùn)動(dòng)過程中,若某一時(shí)刻,△OPA的面積為6,求此時(shí)P的坐標(biāo);
(2)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),△AOP為等腰三角形?(只需寫出t的值,無需解答過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,O是矩形ABCD對(duì)角線的交點(diǎn),AE平分∠BAD,∠AOD=120°,求∠AEO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):
如圖1所示的圖形,像我們常見的學(xué)習(xí)用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個(gè)簡(jiǎn)單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?下面就請(qǐng)你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,若∠A=50°,則∠ABX+∠ACX= °;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有理數(shù) a,b,c 分別對(duì)應(yīng)數(shù)軸上的點(diǎn) A,B,C,若a 2|b 4| 0 ,關(guān)于 x、y 的單項(xiàng)式3(c 3)x y與 yx 是同類項(xiàng). 我們把數(shù)軸上兩點(diǎn)之間的距離用表示兩點(diǎn)的大寫字母一起標(biāo)記,例如,點(diǎn) A 與點(diǎn) B 間的距離記作 AB.
(1)求 a,b,c 的值;
(2)點(diǎn) P 從 C 點(diǎn)出發(fā)以每秒 1 個(gè)單位長度在數(shù)軸上按以下規(guī)律往返運(yùn)動(dòng):第一回合,從點(diǎn) C 到點(diǎn) B 到點(diǎn) A 回到點(diǎn) C;第二回合,從點(diǎn) C 到 BC 的中點(diǎn) D 到 CA 的中點(diǎn) D1 回到點(diǎn) C;第三回合,從點(diǎn) C 到 CD 的中點(diǎn) D2 到 CD1 的中點(diǎn) D3 回到點(diǎn) C……,如此循環(huán)下去,若第 t 秒時(shí)滿足 PB+2PC=AC+1,求 t 的最大值;
(3)在(2)的條件下,P 點(diǎn)第一次從 C 點(diǎn)出發(fā)的同時(shí),數(shù)軸上的動(dòng)點(diǎn) M、N 分別從 A 點(diǎn)和 B 點(diǎn)向右運(yùn)動(dòng),速度分別為每秒 1 個(gè)單位長度和每秒 2 個(gè)單位長度,P 點(diǎn)完成第一個(gè)回合后停止在 C 點(diǎn),當(dāng) MP=2MN 時(shí), t 的值是 (直接填答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的網(wǎng)格中,小正方形的邊長都是1,利用所學(xué)知識(shí)兩種解法求四邊形ABCD的面積,寫出完整求解過程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com