如圖,AB是⊙O的弦,BC與⊙O相切于點(diǎn)B,連接OA、OB.若∠ABC=70°,則∠A等于
A.15°
B.20°
C.30°
D.70°
分析:由BC與⊙0相切于點(diǎn)B,根據(jù)切線的性質(zhì),即可求得∠OBC=90°,又由∠ABC=70°,即可求得∠OBA的度數(shù),然后由OA=OB,利用等邊對等角的知識,即可求得∠A的度數(shù). 解答:解:∵BC與⊙0相切于點(diǎn)B, ∴OB⊥BC, ∴∠OBC=90°, ∵∠ABC=70°, ∴∠OBA=∠OBC-∠ABC=90°-70°=20°, ∵OA=OB, ∴∠A=∠OBA=20°. 點(diǎn)評:此題考查了切線的性質(zhì)與等腰三角形的性質(zhì).此題比較簡單,注意數(shù)形結(jié)合思想的應(yīng)用,注意圓的切線垂直于經(jīng)過切點(diǎn)的半徑定理的應(yīng)用. |
切線的性質(zhì). |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com