分析 由△ABC是等邊三角形可推得∠B=∠C=60°,AB=BC,進(jìn)而得到CD=BC-BD=6,于是得到∠BAD+∠ADB=120°,又∠ADE=60°,可得∠ADB+∠EDC=120°,于是有∠DAB=∠EDC,可證得△ABD∽△DCE,根據(jù)相似三角形的性質(zhì)求得CE,即可求得AE.
解答 解:∵△ABC是等邊三角形,
∴∠B=∠C=60°,AB=BC;
∴CD=BC-BD=9-3=6;
∴∠BAD+∠ADB=120°
∵∠ADE=60°,
∴∠ADB+∠EDC=120°,
∴∠DAB=∠EDC,
又∵∠B=∠C=60°,
∴△ABD∽△DCE,
則$\frac{AB}{BD}=\frac{DC}{CE}$,
即$\frac{9}{3}$=$\frac{6}{CE}$,
解得:CE=2,
故AE=AC-CE=9-2=7.
點(diǎn)評 本題主要考查了等邊三角形的性質(zhì)相似三角形的判定和性質(zhì),能夠求得∠DAB=∠EDC,證出△ABD∽△DCE是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1<y<$\frac{3}{2}$ | B. | $\frac{1}{2}$<y<1 | C. | y>1 | D. | 0<y$<\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
次數(shù) | 余額m(元) |
1 | 50-0.8 |
2 | 50-1.6 |
3 | 50-2.4 |
4 | 50-3.2 |
… | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ∠C=$\frac{1}{2}$∠BOD | B. | AC=AB | C. | ∠C=∠B | D. | ∠A=∠BOD |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com