如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標;
(3)設(shè)點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標.

【答案】分析:(1)根據(jù)拋物線的對稱軸可求出B點的坐標,進而可用待定系數(shù)法求出拋物線的解析式;
(2)由于A、B關(guān)于拋物線的對稱軸直線對稱,若連接BC,那么BC與直線x=1的交點即為所求的點M;可先求出直線BC的解析式,聯(lián)立拋物線對稱軸方程即可求得M點的坐標;
(3)若∠PCB=90°,根據(jù)△BCO為等腰直角三角形,可推出△CDP為等腰直角三角形,根據(jù)線段長度求P點坐標.
解答:解:(1)∵拋物線的對稱軸為x=1,且A(-1,0),
∴B(3,0);
可設(shè)拋物線的解析式為y=a(x+1)(x-3),由于拋物線經(jīng)過C(0,-3),
則有:a(0+1)(0-3)=-3,a=1;
∴y=(x+1)(x-3)=x2-2x-3;

(2)由于A、B關(guān)于拋物線的對稱軸直線x=1對稱,
那么M點為直線BC與x=1的交點;
由于直線BC經(jīng)過C(0,-3),可設(shè)其解析式為y=kx-3,
則有:3k-3=0,k=1;
∴直線BC的解析式為y=x-3;
當x=1時,y=x-3=-2,
即M(1,-2);

(3)設(shè)經(jīng)過C點且與直線BC垂直的直線為直線l,作PD⊥y軸,垂足為D;
∵OB=OC=3,
∴CD=DP=1,OD=OC+CD=4,
∴P(1,-4).
點評:此題考查了二次函數(shù)解析式的確定、軸對稱的性質(zhì)以及特殊三角形的性質(zhì)等知識,難度適中.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標,若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標.(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數(shù)關(guān)系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標.

查看答案和解析>>

同步練習冊答案