(2006•哈爾濱)如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結(jié)果保留根號).

【答案】分析:由題意可先過點A作AH⊥CD于H.在Rt△ACH中,可求出CH,進而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.
解答:解:過點A作AH⊥CD,垂足為H,
由題意可知四邊形ABDH為矩形,∠CAH=30°,
∴AB=DH=1.5,BD=AH=6,
在Rt△ACH中,tan∠CAH=,
∴CH=AH•tan∠CAH=,
∴CH=AH•tan∠CAH=6tan30°=6×(米),
∵DH=1.5,∴CD=2+1.5,
在Rt△CDE中,
∵∠CED=60°,sin∠CED=
∴CE==(4+)(米),
答:拉線CE的長為(4+)米.
點評:命題立意:此題主要考查解直角三角形的應(yīng)用.要求學(xué)生借助仰角關(guān)系構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2006•哈爾濱)已知:二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中點A的坐標是(-1,0),與y軸負半軸交于點C,其對稱軸是直線x=,tan∠BAC=2.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)作圓O’,使它經(jīng)過點A、B、C,點E是AC延長線上一點,∠BCE的平分線CD交圓O’于點D,連接AD、BD,求△ACD的面積;
(3)在(2)的條件下,二次函數(shù)y=ax2+bx+c的圖象上是否存在點P,使得∠PDB=∠CAD?如果存在,請求出所有符合條件的P點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•哈爾濱)已知:二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中點A的坐標是(-1,0),與y軸負半軸交于點C,其對稱軸是直線x=,tan∠BAC=2.
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)作圓O’,使它經(jīng)過點A、B、C,點E是AC延長線上一點,∠BCE的平分線CD交圓O’于點D,連接AD、BD,求△ACD的面積;
(3)在(2)的條件下,二次函數(shù)y=ax2+bx+c的圖象上是否存在點P,使得∠PDB=∠CAD?如果存在,請求出所有符合條件的P點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•哈爾濱)已知點O在直線AB上,且線段OA的長度為4cm,線段OB的長度為6cm,E、F分別為線段OA、OB的中點,則線段EF的長度為    cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•哈爾濱)觀察下列圖形:它們是按一定規(guī)律排列的,依照此規(guī)律,第8個圖形共有    枚五角星.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•哈爾濱)已知圓O1與圓O2半徑的長是方程x2-7x+12=0的兩根,且O1O2=,則圓O1與圓O2的位置關(guān)系是( )
A.相交
B.內(nèi)切
C.內(nèi)含
D.外切

查看答案和解析>>

同步練習冊答案