【答案】
分析:(1)已知頂點坐標(biāo),又拋物線經(jīng)過原點,用待定系數(shù)可求出拋物線解析式;
(2)①根據(jù)拋物線的對稱性求出E點坐標(biāo),再求出直線ME的解析式,把t知代入驗證點P是否在直線ME上;
②最后一問設(shè)出P,N坐標(biāo),根據(jù)幾何關(guān)系求出PN,然后分兩種情況討論:(1)PN=0;(2)PN≠0;把求多邊形面積S轉(zhuǎn)化為求函數(shù)最值問題.
解答:解:(1)因所求拋物線的頂點M的坐標(biāo)為(2,4),
故可設(shè)其關(guān)系式為y=a(x-2)
2+4(1分)
又∵拋物線經(jīng)過O(0,0),
∴得a(0-2)
2+4=0,(2分)
解得a=-1(3分)
∴所求函數(shù)關(guān)系式為y=-(x-2)
2+4,
即y=-x
2+4x.(4分)
(2)①點P不在直線ME上.(5分)
根據(jù)拋物線的對稱性可知E點的坐標(biāo)為(4,0),
又M的坐標(biāo)為(2,4),
設(shè)直線ME的關(guān)系式為y=kx+b.
于是得
,
解得
所以直線ME的關(guān)系式為y=-2x+8.(6分)
由已知條件易得,當(dāng)t=
時,OA=AP=
,
∴P(
,
)(7分)
∵P點的坐標(biāo)不滿足直線ME的關(guān)系式y(tǒng)=-2x+8.
∴當(dāng)t=
時,點P不在直線ME上.(8分)
②S存在最大值.理由如下:(9分)
∵點A在x軸的非負(fù)半軸上,且N在拋物線上,
∴OA=AP=t.
∴點P,N的坐標(biāo)分別為(t,t)、(t,-t
2+4t)
∴AN=-t
2+4t(0≤t≤3),
∴AN-AP=(-t
2+4t)-t=-t
2+3t=t(3-t)≥0,
∴PN=-t
2+3t(10分)
(ⅰ)當(dāng)PN=0,即t=0或t=3時,以點P,N,C,D為頂點的多邊形是三角形,此三角形的高為AD,
∴S=
DC•AD=
×3×2=3.(11分)
(ⅱ)當(dāng)PN≠0時,以點P,N,C,D為頂點的多邊形是四邊形
∵PN∥CD,AD⊥CD,
∴S=
(CD+PN)•AD=
[3+(-t
2+3t)]×2=-t
2+3t+3=-(t-
)
2+
其中(0<t<3),由a=-1,0<
<3,此時S
最大=
.(12分)
綜上所述,當(dāng)t=
時,以點P,N,C,D為頂點的多邊形面積有最大值,這個最大值為
.(13分)
說明:(ⅱ)中的關(guān)系式,當(dāng)t=0和t=3時也適合.
點評:此題考查用待定系數(shù)求函數(shù)解析式,用到頂點坐標(biāo),第二問是研究動點問題,點動圖也動,根據(jù)幾何關(guān)系巧妙設(shè)點,把面積用t表示出來,轉(zhuǎn)化為函數(shù)最值問題.