在一個(gè)3m×4m的長方形地塊上,欲開出一部分作花壇,其圖案要為中心對稱圖形且花壇的面積為長方形面積的一半,圖示是兩種設(shè)計(jì)方案,你還能提供兩種不同的設(shè)計(jì)方案嗎?(要有適當(dāng)?shù)挠?jì)算步驟)
p;【答案】開放題型,答案不唯一解析:
p;【解析】略
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,一個(gè)高4m、寬3m的大門,需要在對角線的頂點(diǎn)間加固一個(gè)木條,求木條的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀理解
九年級一班數(shù)學(xué)學(xué)習(xí)興趣小組在解決下列問題中,發(fā)現(xiàn)該類問題不僅可以應(yīng)用“三角形相似”知識解決問題,還可以“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問題.
請先閱讀下列“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問題的方法,然后再應(yīng)用此方法解決后續(xù)問題.
問題:如圖(1),直立在點(diǎn)D處的標(biāo)桿CD長3m,站立在點(diǎn)F處的觀察者從點(diǎn)E處看到標(biāo)桿頂C、旗桿頂A在一條直線上.已知BD=15m,F(xiàn)D=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標(biāo)系,則線段AE可看作一個(gè)一次函數(shù)的圖象.
由題意可得各點(diǎn)坐標(biāo)為:點(diǎn)E(0,1.6),C(2,3),B(17,0),且所求的高度就為點(diǎn)A的縱坐標(biāo).
設(shè)直線AE的函數(shù)關(guān)系式為y=kx+b.
把E(0,1.6),C(2,3)代入得
b=1.6
2k+b=3.
解得
k=0.7
b=1.6.
精英家教網(wǎng)
∴y=0.7x+1.6.
∴當(dāng)x=17時(shí),y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問題
請應(yīng)用上述方法解決下列問題:
如圖(3),河對岸有一路燈桿AB,在燈光下,小明在點(diǎn)D處測得自己的影長DF=3m,BD=9m,沿BD方向到達(dá)點(diǎn)F處再測得自己的影長FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀理解
九年級一班數(shù)學(xué)學(xué)習(xí)興趣小組在解決下列問題中,發(fā)現(xiàn)該類問題不僅可以應(yīng)用“三角形相似”知識解決問題,還可以“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問題.
請先閱讀下列“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問題的方法,然后再應(yīng)用此方法解決后續(xù)問題.
問題:如圖(1),直立在點(diǎn)D處的標(biāo)桿CD長3m,站立在點(diǎn)F處的觀察者從點(diǎn)E處看到標(biāo)桿頂C、旗桿頂A在一條直線上.已知BD=15m,F(xiàn)D=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標(biāo)系,則線段AE可看作一個(gè)一次函數(shù)的圖象.
由題意可得各點(diǎn)坐標(biāo)為:點(diǎn)E(0,1.6),C(2,3),B(17,0),且所求的高度就為點(diǎn)A的縱坐標(biāo).
設(shè)直線AE的函數(shù)關(guān)系式為y=kx+b.
把E(0,1.6),C(2,3)代入得數(shù)學(xué)公式解得數(shù)學(xué)公式
∴y=0.7x+1.6.
∴當(dāng)x=17時(shí),y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問題
請應(yīng)用上述方法解決下列問題:
如圖(3),河對岸有一路燈桿AB,在燈光下,小明在點(diǎn)D處測得自己的影長DF=3m,BD=9m,沿BD方向到達(dá)點(diǎn)F處再測得自己的影長FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省南京市溧水縣中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

閱讀理解
九年級一班數(shù)學(xué)學(xué)習(xí)興趣小組在解決下列問題中,發(fā)現(xiàn)該類問題不僅可以應(yīng)用“三角形相似”知識解決問題,還可以“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問題.
請先閱讀下列“建立直角坐標(biāo)系、應(yīng)用一次函數(shù)”解決問題的方法,然后再應(yīng)用此方法解決后續(xù)問題.
問題:如圖(1),直立在點(diǎn)D處的標(biāo)桿CD長3m,站立在點(diǎn)F處的觀察者從點(diǎn)E處看到標(biāo)桿頂C、旗桿頂A在一條直線上.已知BD=15m,F(xiàn)D=2m,EF=1.6m,求旗桿高AB.
解:建立如圖(2)所示的直角坐標(biāo)系,則線段AE可看作一個(gè)一次函數(shù)的圖象.
由題意可得各點(diǎn)坐標(biāo)為:點(diǎn)E(0,1.6),C(2,3),B(17,0),且所求的高度就為點(diǎn)A的縱坐標(biāo).
設(shè)直線AE的函數(shù)關(guān)系式為y=kx+b.
把E(0,1.6),C(2,3)代入得解得
∴y=0.7x+1.6.
∴當(dāng)x=17時(shí),y=0.7×17+1.6=13.5,即AB=13.5(m).
解決問題
請應(yīng)用上述方法解決下列問題:
如圖(3),河對岸有一路燈桿AB,在燈光下,小明在點(diǎn)D處測得自己的影長DF=3m,BD=9m,沿BD方向到達(dá)點(diǎn)F處再測得自己的影長FG=4m.如果小明的身高為1.6m,求路燈桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一個(gè)高4m、寬3m的大門,需要在對角線的頂點(diǎn)間加固一個(gè)木條,求木條的長.

查看答案和解析>>

同步練習(xí)冊答案