【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+2與坐標(biāo)軸交于A、B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)By軸上,C點(diǎn)的坐標(biāo)為(1,0),拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B、C.

(1)求該拋物線的解析式;

(2)根據(jù)圖象直接寫(xiě)出不等式ax2+(b﹣1)x+c2的解集;

(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),且在直線AB上方,過(guò)點(diǎn)PAB的垂線段,垂足為Q點(diǎn).當(dāng)PQ=時(shí),求P點(diǎn)坐標(biāo).

【答案】(1)y=﹣x2﹣x+2;(2)﹣2x0;(3)P點(diǎn)坐標(biāo)為(﹣1,2).

【解析】分析:(1)、根據(jù)題意得出點(diǎn)A和點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法求出二次函數(shù)的解析式;(2)、根據(jù)函數(shù)圖像得出不等式的解集;(3)、PEx軸于點(diǎn)E,交AB于點(diǎn)D,根據(jù)題意得出∠PDQ=ADE=45°,PD==1,然后設(shè)點(diǎn)P(x,﹣x2﹣x+2),則點(diǎn)D(x,x+2),根據(jù)PD的長(zhǎng)度得出x的值,從而得出點(diǎn)P的坐標(biāo).

詳解:(1)當(dāng)y=0時(shí),x+2=0,解得x=﹣2,當(dāng)x=0時(shí),y=0+2=2,

則點(diǎn)A(﹣2,0),B(0,2),

A(﹣2,0),C(1,0),B(0,2),分別代入y=ax2+bx+c解得

∴該拋物線的解析式為y=﹣x2﹣x+2;

(2)ax2+(b﹣1)x+c2,ax2+bx+cx+2,

則不等式ax2+(b﹣1)x+c2的解集為﹣2x0;

(3)如圖,作PEx軸于點(diǎn)E,交AB于點(diǎn)D,

RtOAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=ADE=45°,

RtPDQ中,∠DPQ=PDQ=45°,PQ=DQ=,PD==1,

設(shè)點(diǎn)P(x,﹣x2﹣x+2),則點(diǎn)D(x,x+2),PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,

即﹣x2﹣2x=1,解得x=﹣1,則﹣x2﹣x+2=2,P點(diǎn)坐標(biāo)為(﹣1,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為進(jìn)一步弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,某校決定開(kāi)展以下四項(xiàng)活動(dòng):A經(jīng)典古詩(shī)文朗誦;B書(shū)畫(huà)作品鑒賞;C民族樂(lè)器表演;D圍棋賽學(xué)校要求學(xué)生全員參與,且每人限報(bào)一項(xiàng)九年級(jí)班班長(zhǎng)根據(jù)本班報(bào)名結(jié)果,繪制出了如下兩個(gè)尚不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:

直接填空:九年級(jí)班的學(xué)生人數(shù)是______,在扇形統(tǒng)計(jì)圖中,B項(xiàng)目所對(duì)應(yīng)的扇形的圓心角度數(shù)是______;

將條形統(tǒng)計(jì)圖補(bǔ)充完整;

用列表或畫(huà)樹(shù)狀圖的方法,求該班學(xué)生小聰和小明參加相同項(xiàng)目活動(dòng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將矩形紙片沿對(duì)角線翻折,使點(diǎn)的對(duì)應(yīng)點(diǎn)(落在矩形所在平面內(nèi),相交于點(diǎn),接.

(1)在圖1中,

的位置關(guān)系為__________________

②將剪下后展開(kāi),得到的圖形是_________________;

(2)若圖1中的矩形變?yōu)槠叫兴倪呅螘r(shí)(),如圖2所示,結(jié)論①、②是否成立,若成立,請(qǐng)對(duì)結(jié)論②加以證明,若不成立,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,梯形ABCD中,ADBC,EBC的中點(diǎn),∠BEA=∠DEA ,聯(lián)結(jié)AE、BD相交于點(diǎn)FBDCD.

1)求證:AE=CD;

2)求證:四邊形ABED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,點(diǎn)G在邊BC的延長(zhǎng)線上,CE平分∠BCD,CF平分∠GCD,EF∥BCCD于點(diǎn)O.

(1)求證:OE=OF;

(2)若點(diǎn)OCD的中點(diǎn),求證:四邊形DECF是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),連接CP,過(guò)點(diǎn)PPECPAB于點(diǎn)D,且PE=PC,過(guò)點(diǎn)PPFOPPF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.

(1)直接寫(xiě)出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):_____;

(2)四邊形BFDE的面積記為S,當(dāng)t為何值時(shí),S有最小值,并求出最小值;

(3)BDF能否是等腰直角三角形,若能,求出t;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】日是第個(gè)世界讀書(shū)日,為迎接第個(gè)世界讀書(shū)日的到來(lái),某校舉辦讀書(shū)分享大賽活動(dòng):大賽以“推薦分享”為主題,參賽者選擇一本自己最喜歡的書(shū),然后給該書(shū)寫(xiě)一段推薦語(yǔ)、一篇讀書(shū)心得、舉辦一場(chǎng)讀書(shū)講座.大賽組委會(huì)對(duì)參賽者提交的推薦語(yǔ)、讀書(shū)心得、舉辦的讀書(shū)講座進(jìn)行打分(各項(xiàng)成績(jī)均按百分制),綜合成績(jī)排名第一的選手將獲得大賽一等獎(jiǎng).現(xiàn)有甲、乙兩位同學(xué)的各項(xiàng)成績(jī)?nèi)缦卤硭荆?/span>

參賽者

推薦語(yǔ)

讀書(shū)心得

讀書(shū)講座

1)若將三項(xiàng)成績(jī)的平均分作為參賽選手的綜合成績(jī),則甲、乙二人誰(shuí)最有可能獲得大賽一等獎(jiǎng)?請(qǐng)通過(guò)計(jì)算說(shuō)明理由.

2)若“推薦語(yǔ)”“讀書(shū)心得”“讀書(shū)講座”的成績(jī)按確定綜合成績(jī),則甲、乙二人誰(shuí)最有可能獲得大賽一等獎(jiǎng)?請(qǐng)通過(guò)計(jì)算說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)都在直線上,分別為中點(diǎn),直線上所有線段的長(zhǎng)度之和為19,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)D在y軸的正半軸上,點(diǎn)B、點(diǎn)C在第一象限,sin∠OAD=,線段AD、AB的長(zhǎng)分別是方程x2﹣11x+24=0的兩根(AD>AB).

(1)求點(diǎn)B的坐標(biāo);

(2)求直線AB的解析式;

(3)在直線AB上是否存在點(diǎn)M,使以點(diǎn)C、點(diǎn)B、點(diǎn)M為頂點(diǎn)的三角形與△OAD相似?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案