【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A (3,2)、B(1,3)!鰽OB繞點(diǎn)O 逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1.
(1)畫出旋轉(zhuǎn)后的圖形;
(2)求線段OB在旋轉(zhuǎn)過程中所掃過的圖形面積(寫過程)。
【答案】
(1)解:如圖所示,則 為所求作的圖形;
(2)解:點(diǎn)B掃過的圖形為扇形 ,∵旋轉(zhuǎn)角為90°,∴ =90°,∵點(diǎn)B(1,3),∴ ,∴ = = = .
【解析】(1)根據(jù)A 、B兩點(diǎn)坐標(biāo),確定x軸和y軸,再將△AOB繞點(diǎn)O 逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1,畫出旋轉(zhuǎn)后的圖形。
(2)線段OB在旋轉(zhuǎn)過程中所掃過的圖形是以O(shè)為圓心,OB為半徑的扇形,可知此扇形的圓心角為90°,再根據(jù)點(diǎn)B的坐標(biāo)求出半徑OB的長,即可求出此扇形的面積。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念和扇形面積計(jì)算公式的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AC平分∠PAQ,點(diǎn)B、B′分別在邊AP、AQ上,如果添加一個(gè)條件,即可推出AB=AB′,下列條件中無法推出AB=AB′的是( )
A. BB′⊥AC B. BC=B′C C. ∠ACB=∠ACB′ D. ∠ABC=∠AB′C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)(-1,0),對稱軸為:直線x=1,則下列結(jié)論中正確的是:( )
A.a>0
B.當(dāng)x>1時(shí),y隨x的增大而增大
C. <0
D.x=3是一元二次方程ax2+bx+c=0(a≠0)的一個(gè)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在《朗讀者》節(jié)目的影響下,某中學(xué)開展了“好書伴我成長”讀書活動.為了解5月份八年級300名學(xué)生的讀書情況,隨機(jī)調(diào)查了八年級50名學(xué)生讀書的冊數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表所示:
冊數(shù) | 0 | 1 | 2 | 3 | 4 |
人數(shù) | 3 | 13 | 16 | 17 | 1 |
關(guān)于這組數(shù)據(jù),下列說法正確的是 ( )
A. 中位數(shù)是2 B. 眾數(shù)是17 C. 平均數(shù)是3 D. 方差是2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖像如圖所示,則①abc;②b2-4ac;③2a+b;④a+b+c這四個(gè)式子中,值為負(fù)數(shù)的有個(gè)( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,O是AB上一點(diǎn),以O(shè)A為半徑的⊙O經(jīng)過點(diǎn)D。
(1)求證:BC是⊙O切線;
(2)若BD=5, DC=3,求AC的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是ABCD邊AB上的一點(diǎn),射線CP交DA的延長線于點(diǎn)E,則圖中相似的三角形有( )
A.0對
B.1對
C.2對
D.3對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列解題過程的空白處填上適當(dāng)?shù)膬?nèi)容(推理的理由或數(shù)學(xué)表達(dá)式)
如圖,∠1+∠2=1800,∠3=∠4.
求證:EF∥GH.
證明:∵∠1+∠2=1800(已知),
∠AEG =∠1(對頂角相等)
∴ ,
∴AB∥CD( ),
∴∠AEG=∠ ( ),
∵∠3=∠4(已知),
∴∠3+∠AEG=∠4+∠ ,(等式性質(zhì))
∴ ,
∴EF∥GH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是直線AB上一點(diǎn),∠AOD=120,∠AOC=90,OE平分∠BOD,則圖中互為補(bǔ)角的角有__________對。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com