【題目】平行四邊形ABCD在平面直角坐標(biāo)系中的位置如圖所示,已知AB=8,AD=6,∠BAD=60°,點(diǎn)A的坐標(biāo)為(-2,0).

求:(1)點(diǎn)C的坐標(biāo);

2)直線(xiàn)ACy軸的交點(diǎn)E的坐標(biāo).

【答案】1C(9, );(2E0,

【解析】

(1)過(guò)CCHx軸于點(diǎn)H,利用平行四邊形的性質(zhì)結(jié)合直角三角形的性質(zhì)得出C點(diǎn)坐標(biāo);

(2) 利用待定系數(shù)法求出一次函數(shù)解析式,再利用x =0進(jìn)而得出答案.

解:(1)過(guò)CCHx軸于點(diǎn)H

∵四邊形ABCD為平行四邊形,

CD=AB=8,BC=AD=6,AB//DC,AD//BC

∴∠BAD=HBC

∵∠BAD =60°,

∴∠HBC=60°

BH=3CH=

A-2,0),

AO=2

OB=6

OH=OB+BH=9

C(9,)

2)設(shè)直線(xiàn)AC的表達(dá)式為:y=kx+b,把A-2,0)和C(9)代入,得

,

解得:

E0,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,3),點(diǎn)B和點(diǎn)D的坐標(biāo)分別為(m,0),(n,4),且m0,四邊形ABCD是矩形.

(1)如圖1,當(dāng)四邊形ABCD為正方形時(shí),求m,n的值;

(2)在圖2中,畫(huà)出矩形ABCD,簡(jiǎn)要說(shuō)明點(diǎn)C,D的位置是如何確定的,并直接用含m的代數(shù)式表示點(diǎn)C的坐標(biāo);

(3)探究:當(dāng)m為何值時(shí),矩形ABCD的對(duì)角線(xiàn)AC的長(zhǎng)度最短.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店新進(jìn)一種臺(tái)燈.這種臺(tái)燈的成本價(jià)為每個(gè)30元,經(jīng)調(diào)查發(fā)現(xiàn),這種臺(tái)燈每天的銷(xiāo)售量y(單位:個(gè))是銷(xiāo)售單價(jià)x(單位:元)(30≤x≤60)的一次函數(shù).

x

30

35

40

45

50

y

30

25

20

15

10

(1)求銷(xiāo)售量y與銷(xiāo)售單價(jià)x之間的函數(shù)表達(dá)式;

(2)設(shè)這種臺(tái)燈每天的銷(xiāo)售利潤(rùn)為w元.這種臺(tái)燈銷(xiāo)售單價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(已知二次函數(shù)y=ax2+bx+c(a0)的圖象如圖所示,下列結(jié)論:①abc0;2a+b0;b2﹣4ac0;a﹣b+c0,其中正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把長(zhǎng)方形紙片紙沿對(duì)角線(xiàn)折疊,設(shè)重疊部分為,那么,下列說(shuō)法錯(cuò)誤的是(

A.是等腰三角形,

B.折疊后ABECBD一定相等

C.折疊后得到的圖形是軸對(duì)稱(chēng)圖形

D.EBAEDC一定是全等三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由矩形(非正方形)各內(nèi)角平分線(xiàn)所圍成的四邊形一定是(  )

A. 平行四邊形 B. 矩形 C. 菱形 D. 正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B46°,三角形的外角∠DAC和∠ACF的平分線(xiàn)交于點(diǎn)E,則∠AEC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品現(xiàn)在的售價(jià)為每件60元,每個(gè)星期可賣(mài)出300件,市場(chǎng)調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)1元,每個(gè)星期要少賣(mài)出10件;每降價(jià)1元,每個(gè)星期可多賣(mài)出20件.已知商品進(jìn)價(jià)為每件40元,設(shè)每件商品的售價(jià)為x元(且x為正整數(shù)),每個(gè)星期的銷(xiāo)售量為y件.

(1)求yx的函數(shù)關(guān)系并直接寫(xiě)出自變量x的取值范圍;

(2)設(shè)每星期的銷(xiāo)售利潤(rùn)為W,請(qǐng)直接寫(xiě)出Wx的關(guān)系式;

(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)星期可獲得最大利潤(rùn)?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AGBC于點(diǎn)G,AFDE于點(diǎn)F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案