【題目】如圖,在△ABC中,CD是邊AB上的中線,∠B是銳角,sinB=,tanA=,AC=,

(1)求∠B 的度數(shù)和 AB 的長.

(2)求 tan∠CDB 的值.

【答案】(1)∠B的度數(shù)為45°,AB的值為3;(2)tan∠CDB的值為2.

【解析】

1)作CEABE,設(shè)CE=x,利用∠A的正切可得到AE=2x,則根據(jù)勾股定理得到AC=x,所以x=,解得x=1,于是得到CE=1,AE=2,接著利用sinB=得到∠B=45°,則BE=CE=1,最后計算AE+BE得到AB的長;

2)利用CD為中線得到BD=AB=1.5,則DE=BD-BE=0.5,然后根據(jù)正切的定義求解.

1)作 CEAB E,設(shè) CEx,

RtACE中,∵tanA

AE2x,

ACx,

x,解得x1,

CE1,AE2,

RtBCE中,∵sinB,

∴∠B=45°,

∴△BCE為等腰直角三角形,

BECE1,

ABAE+BE3,

答:∠B的度數(shù)為45°,AB的值為3;

2)∵CD為中線,

BDAB1.5,

DEBDBE1.510.5

tanCDE=2,即tanCDB的值為2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的切線,A為切點,AC⊙O的弦,過OOHAC于點H.若OH3AB8,BO10.求:

(1)⊙O的半徑;

(2)AC的長(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、CD分別與半圓OO切于點A,D,BC⊙O于點E.若AB=4,CD=9,則⊙O的半徑為( 。

A. 12 B. C. 6 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABO中,斜邊AB=1,若OCBA,AOC=36°,則(  )

A. BAO的距離為sin54°

B. AOC的距離為sin36°sin54°

C. BAO的距離為tan36°

D. AOC的距離為cos36°sin54°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的頂點坐標分別為A13),B42),C2,1).

1作出與ABC關(guān)于x軸對稱的A1B1C1

2)以原點O為位似中心,在原點的另一個側(cè)畫出A2B2C2.使=,并寫出A2、B2C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BA=BC=20cm,AC=30cm,點PA點出發(fā),沿著AB以每秒4cm的速度向B點運動;同時點QC點出發(fā),沿著CA以每秒3cm的速度向A點運動,設(shè)運動時間為x秒.

(1)x為何值時,PQ∥BC;

(2)是否存在某一時刻,使△APQ∽△CQB?若存在,求出此時AP的長;若不存在,請說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的內(nèi)接三角形,的直徑,過點的切線交的延長線于點

(1)求證:

(2)過點的切線于點,求證:;

(3)若點為直徑下方半圓的中點,連接于點,且,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線頂點P(1,4),與y軸交于點C(0,3),與x軸交于點A,B.

(1)求拋物線的解析式.

(2)Q是拋物線上除點P外一點,△BCQ與△BCP的面積相等,求點Q的坐標.

(3)若M,N為拋物線上兩個動點,分別過點M,N作直線BC的垂線段,垂足分別為D,E.是否存在點M,N使四邊形MNED為正方形?如果存在,求正方形MNED的邊長;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】撫順市某校想知道學生對遙遠的赫圖阿拉”,“旗袍故里等家鄉(xiāng)旅游品牌的了解程度,隨機抽取了部分學生進行問卷調(diào)查,問卷有四個選項(每位被調(diào)查的學生必選且只選一項)A.十分了解,B.了解較多,C.了解較少,D.不知道.將調(diào)查的結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

(1)本次調(diào)查了多少名學生?

(2)補全條形統(tǒng)計圖;

(3)該校共有500名學生,請你估計十分了解的學生有多少名?

(4)在被調(diào)查十分了解的學生中有四名學生會干部,他們中有3名男生和1名女生,學校想從這4人中任選兩人做家鄉(xiāng)旅游品牌宣傳員,請用列表或畫樹狀圖法求出被選中的兩人恰好是一男一女的概率.

查看答案和解析>>

同步練習冊答案