在等腰△ABC中,∠C=90°,則tanA=________.

1
分析:根據(jù)△ABC是等腰三角形,∠C=90°,求出∠A=∠B=45°,從而求出角A的正切值.
解答:∵△ABC是等腰三角形,∠C=90°,
∴∠A=∠B=45°,
∴tanA=tan45°=1,
故答案為1.
點評:本題涉及到的知識點有:等腰直角三角形、特殊角的三角函數(shù)值,解題時牢記特殊角的三角函數(shù)值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖所示,在等腰△ABC中,點D是BC的中點,DE⊥AB,DF⊥AC,垂足分別為E、F,圖中有幾對全等三角形( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)二模)如圖,在等腰△ABC中,底邊BC的中點是點D,底角的正切值是
1
3
,將該等腰三角形繞其腰AC上的中點M旋轉(zhuǎn),使旋轉(zhuǎn)后的點D與A重合,得到△A′B′C′,如果旋轉(zhuǎn)后的底邊B′C′與BC交于點N,那么∠ANB的正切值等于
3
4
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在等腰△ABC中,AB=AC,∠A=80°,則一腰上的高CD與底邊BC的夾角為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,AB=AC=10cm,直線DE垂直平分AB,分別交AB、AC于D、E兩點.若BC=8cm,則△BCE的周長是
18
18
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,∠ABC=90°,D為底邊AC中點,過D點作DE⊥DF,交AB于E,交BC于F.若AE=12,F(xiàn)C=5,
(1)試說明DE=DF;
(2)求EF長.

查看答案和解析>>

同步練習(xí)冊答案