利客來超市購進一批20元/千克的綠色食品,如果以30元/千克銷售,那么每天可售出400千克.由銷售經(jīng)驗知,每天銷售量y(千克)與銷售單價x(元)(x≥30)存在如圖所示的一次函數(shù)關(guān)系.
(1)試求出y與x的函數(shù)關(guān)系式;
(2)設(shè)利客來超市銷售該綠色食品每天獲得利潤p元,當銷售單價為何值時,每天可獲得最大利潤?最大利潤是多少?
(3)該超市經(jīng)理要求每天利潤不得低于4180元,請你幫助該超市確定綠色食品銷售單價x的范圍.
(1)設(shè)y=kx+b,由圖象可知,
30k+b=400
40k+b=200

解之,得
k=-20
b=1000
,
∴y=-20x+1000(30≤x≤50,不寫自變量取值范圍不扣分).

(2)p=(x-20)y
=(x-20)(-20x+1000)
=-20x2+1400x-20000.
∵a=-20<0,
∴p有最大值.
當x=-
1400
2×(-20)
=35時,p最大值=4500.
即當銷售單價為35元/千克時,每天可獲得最大利潤4500元.

(3)當P=4180時,4180=-20x2+1400x-20000,
解得x1=31,x2=39,
∵圖象開口向下,x=35時,p有最大值4500,
∴綠色食品銷售單價為31≤x≤39的范圍時符合要求.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+2交x軸于A(-1,0),B(4,0)兩點,交y軸于點C,與過點C且平行于x軸的直線交于另一點D,點P是拋物線上一動點.

(1)求拋物線解析式及點D坐標;
(2)點E在x軸上,若以A,E,D,P為頂點的四邊形是平行四邊形,求此時點P的坐標;
(3)過點P作直線CD的垂線,垂足為Q,若將△CPQ沿CP翻折,點Q的對應(yīng)點為Q′.是否存在點P,使Q′恰好落在x軸上?若存在,求出此時點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸交于A(1,0),B(-3,0)兩點.
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于A(-6,0)、B(2,0),與y軸交于點C(0,-6).
(1)求此拋物線的函數(shù)表達式,寫出它的對稱軸;
(2)若在拋物線的對稱軸上存在一點M,使△MBC的周長最小,求點M的坐標;
(3)若點P(0,k)為線段OC上的一個不與端點重合的動點,過點P作PDCM交x于點D,連接MD、MP,設(shè)△MPD的面積為S,求當點P運動到何處時S的值最大?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+2.6.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m.
(1)求y與x的關(guān)系式;(不要求寫出自變量x的取值范圍)
(2)球能否越過球網(wǎng)?球會不會出界?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,點C、B分別為拋物線C1:y1=x2+1,拋物線C2:y2=a2x2+b2x+c2的頂點.分別過點B、C作x軸的平行線,交拋物線C1、C2于點A、D,且AB=BD.
(1)求點A的坐標:
(2)如圖2,若將拋物線C1:“y1=x2+1”改為拋物線“y1=2x2+b1x+c1”.其他條件不變,求CD的長和a2的值;
(3)如圖2,若將拋物線C1:“y1=x2+1”改為拋物線“y1=4x2+b1x+c1”,其他條件不變,求b1+b2的值______(直接寫結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

市“健益”超市購進一批20元/千克的綠色食品,如果以30元/千克銷售,那么每天可售出400千克.由銷售經(jīng)驗知,每天銷售量y(千克)與銷售單價x(元)(x≥30)存在如下圖所示的一次函數(shù)關(guān)系.
(1)試求出y與x的函數(shù)關(guān)系式;
(2)設(shè)“健益”超市銷售該綠色食品每天獲得利潤為P元,當銷售單價為何值時,每天可獲得最大利潤?最大利潤是多少?
(3)根據(jù)市場調(diào)查,該綠色食品每天可獲利潤不超過4480元,現(xiàn)該超市經(jīng)理要求每天利潤不得低于4180元,請你幫助該超市確定綠色食品銷售單價x的范圍(直接寫出).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

二次函數(shù)y=-
1
2
x2+
3
2
x+m-2
的圖象與x軸交于A、兩點(點A在點B左邊),與y軸交于C點,且∠ACB=90°.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)計兩種方案:作一條與y軸不重合,與△ABC兩邊相交的直線,使截得的三角形與△ABC相似,并且面積為△BOC面積的
1
4
,寫出所截得的三角形三個頂點的坐標(注:設(shè)計的方案不必證明).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,BC是⊙O的直徑,點A在圓上,且AB=AC=4.P為AB上一點,過P作PE⊥AB分別交BC、OA于E、F.
(1)設(shè)AP=1,求△OEF的面積;
(2)設(shè)AP=a(0<a<2),△APF、△OEF的面積分別記為S1、S2
①若S1=S2,求a的值;
②若S=S1+S2,是否存在一個實數(shù)a,使S<
15
3
?若存在,求出一個a的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案