【題目】如圖,面積為30的長(zhǎng)方形OABC的邊OA在數(shù)軸上,O為原點(diǎn),OC=5.將長(zhǎng)方形OABC沿?cái)?shù)軸水平移動(dòng),O,A,B,C移動(dòng)后的對(duì)應(yīng)點(diǎn)分別記為O1, A1, B1, C1,移動(dòng)后的長(zhǎng)方形O1A1B1C1與原長(zhǎng)方形OABC重疊部分的面積記為S
(1)當(dāng)S恰好等于原長(zhǎng)方形面積的一半時(shí),數(shù)軸上點(diǎn)A1表示的數(shù)是多少?
(2)設(shè)點(diǎn)A的移動(dòng)距離AA1=x
①當(dāng)S=10時(shí),求x的值;
②D為線段AA1的中點(diǎn),點(diǎn)E在線段OO1上,且OE=OO1,當(dāng)點(diǎn)D,E所表示的數(shù)互為相反數(shù)時(shí),求x的值.
【答案】(1)A1表示的數(shù)是3或9;(2)①x=4,②x=.
【解析】
(1)根據(jù)長(zhǎng)方形的面積可得OA長(zhǎng)即點(diǎn)A表示的數(shù),在由已知條件得S=15,根據(jù)題意分情況討論:①當(dāng)向左移動(dòng)時(shí),②當(dāng)向右移動(dòng)時(shí),根據(jù)長(zhǎng)方形面積公式分別計(jì)算、分析即可得出答案.
(2)①由(1)知:OA=O1A1=6,OC=O1C1=5,由AA1=x得OA1=6-x,由長(zhǎng)方形面積公式列出方程,解之即可.
②當(dāng)向左移動(dòng)時(shí),由AA1=x得OA1=6-x,OO1=x,根據(jù)題意分別得出點(diǎn)E、點(diǎn)D表示的數(shù),由點(diǎn)E和點(diǎn)D表示的數(shù)互為相反數(shù)列出方程,解之即可;當(dāng)向右移動(dòng)時(shí),點(diǎn)D、E表示的數(shù)都是正數(shù),不符合題意.
(1)解: ∵S長(zhǎng)方形OABC=OA·OC=30,OC=5,
∴OA=6,
∴點(diǎn)A表示的數(shù)是6,
∵S= S長(zhǎng)方形OABC= ×30=15,
當(dāng)向左移動(dòng)時(shí),
OA1·OC=15,
∴OA1=3,
∴A1表示的數(shù)是3;
②當(dāng)向右移動(dòng)時(shí),
∴O1A·AB=15,
∴O1A=3,
∵OA=O1A1=6,
∴OA1=6+6-3=9,
∴A1表示的數(shù)是9;
綜上所述:A1表示的數(shù)是3或9.
(2)解: ①由(1)知:OA=O1A1=6,OC=O1C1=5,
∵AA1=x,
∴OA1=6-x,
∴S=5×(6-x)=10,
解得:x=4.
②當(dāng)長(zhǎng)方形OABC沿?cái)?shù)軸正方向運(yùn)動(dòng)時(shí),點(diǎn)D,E表示的數(shù)均為正數(shù),不符合題意;
當(dāng)點(diǎn)D,E所表示的數(shù)互為相反數(shù)時(shí),長(zhǎng)方形OABC沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),畫圖如下:
∵AA1=x,
∴OA1=6-x,OO1=x,
∴OE=OO1=x,
∴點(diǎn)E表示的數(shù)為-x,
又∵點(diǎn)D為AA1中點(diǎn),
∴A1D=AA1=x,
∴OD=OA1+A1D=6-x+x=6-x,
∴點(diǎn)D表示的數(shù)為6-x,
又∵點(diǎn)E和點(diǎn)D表示的數(shù)互為相反數(shù),
∴6-x-x=0,
解得:x=.
故答案為:(1)A1表示的數(shù)是3或9;(2)①x=4,②x=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在AC上,點(diǎn)F、G分別在AC、BC的延長(zhǎng)線上,CE平分∠ACB交BD于點(diǎn)O,且∠EOD+∠OBF=180°,∠F=∠G.則圖中與∠ECB相等的角有( )
A. 6個(gè) B. 5個(gè) C. 4個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=125°,∠PCD=135°,求∠APC的度數(shù).
小明的思路是:過P作PE∥AB,通過平行線性質(zhì)來求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為 度。
(2)問題遷移:如圖2,AB∥CD,點(diǎn)P在射線OM上運(yùn)動(dòng),記∠PAB=α,∠PCD=β,當(dāng)點(diǎn)P在B、D兩點(diǎn)之間運(yùn)動(dòng)時(shí),問∠APC與α、β之間有何數(shù)量關(guān)系?請(qǐng)說明理由;
(3)在(2)的條件下,①如果點(diǎn)P運(yùn)動(dòng)到D點(diǎn)右側(cè)(不包括D點(diǎn)),則∠APC與α、β之間的數(shù)量關(guān)系為 .②如果點(diǎn)P運(yùn)動(dòng)到B點(diǎn)左側(cè)(不包括B點(diǎn)),則∠APC與α、β之間的數(shù)量關(guān)系 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,某校政教處對(duì)部分學(xué)生及家長(zhǎng)就校園安全知識(shí)的了解程度,進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制成如圖所示的兩幅統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)參與調(diào)查的學(xué)生及家長(zhǎng)共有 人;
(2)在扇形統(tǒng)計(jì)圖中,“基本了解”所對(duì)應(yīng)的圓心角的度數(shù)是 ;
(3)在條形統(tǒng)計(jì)圖中,“非常了解”所對(duì)應(yīng)的學(xué)生人數(shù)是 ;
(4)若全校有1200名學(xué)生,請(qǐng)你估計(jì)對(duì)“校園安全”知識(shí)達(dá)到“非常了解”和“基本了解”的學(xué)生共有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖, AB∥CD,∠1=∠2,那么∠E和∠F相等嗎? 為什么?
【答案】相等,理由見解析.
【解析】試題分析:分別過E、F 點(diǎn)作CD的平行線EM、FN,根據(jù)平行線的性質(zhì)得CD∥FN∥EM∥AB,則∠3=∠1,∠4=∠5,∠1=∠6,而∠1=∠2,于是3+∠4=∠5+∠6.
試題解析:分別過E、F 點(diǎn)作CD的平行線EM、FN,如圖
∵AB∥CD,
∴CD∥FN∥EM∥AB,
∴∠3=∠2,∠4=∠5,∠1=∠6,
而∠1=∠2,
∴∠3+∠4=∠5+∠6,
即∠BEF=∠EFC.
【題型】解答題
【結(jié)束】
26
【題目】(1)填空21-20=2( ); 22-21=2( ) ;23 -22=2( )
(2)請(qǐng)用字母表示第n個(gè)等式,并驗(yàn)證你的發(fā)現(xiàn).
(3)利用(2)中你的發(fā)現(xiàn),求20+21+22+23+…+22016+22017的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的頂點(diǎn)A,B,C的坐標(biāo)分別是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).
①作出△ABC關(guān)于原點(diǎn)O中心對(duì)稱的圖形;
②將△ABC繞原點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°后得到△A1B1C1 , 畫出△A1B1C1 , 并寫出點(diǎn)A1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將9個(gè)數(shù)填入幻方的九個(gè)格中,使處于同一橫行、同一豎列、同一斜對(duì)角線上的三個(gè)數(shù)的和相等,如圖1所示。
(1)如圖2所示,求的值;
(2)如圖3所示:
①若求整式D;
②若求這九個(gè)整式的和是多少。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過點(diǎn)E做直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機(jī),某商店決定購(gòu)進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購(gòu)進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購(gòu)進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.
(1)求購(gòu)進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購(gòu)進(jìn)這兩種紀(jì)念品共100件,考慮市場(chǎng)需求和資金周轉(zhuǎn),用于購(gòu)買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售每件A種紀(jì)念品可獲利潤(rùn)20元,每件B種紀(jì)念品可獲利潤(rùn)30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com