如圖,已知在直角三角形ABC中,∠BCA=90°,數(shù)學公式,分別以AB、AC為底邊向三角形ABC的外側(cè)作等腰三角形ADB和等腰三角形CEA,且AD⊥AC,AE⊥AB,連接DE,交AB于點F,
(1)求數(shù)學公式的值;
(3)求數(shù)學公式的值.

證明:(1)∵AD⊥AC,AE⊥AB,
∴∠DAC=∠BAE=90°,
∴∠DAB=∠EAC,
∵AD=BD,AE=EC,
∴∠DAB=∠DBA,∠ECA=∠EAC,
∴∠DBA=∠ECA,
∴△ADB∽△AEC,
=,
∵∠BCA=90°,
=
=;

(2)過點E作EH⊥AC,延長交AB于G,連接DG,
∵AE=EC,
∴AH=CH,EH⊥AC,
∵∠BCA=90°,
∴GH∥BC,
∴AG=BG,
∵AD=BD,
∴DG⊥AB,
∵AD⊥AC,AE⊥AB,
∴GE∥AD,DG∥AE,
∴四邊形ADGE是平行四邊形,
∴AF=GF,

分析:(1)先根據(jù)∠DAC=∠BAE=90°,得出∠DAB=∠EAC,再根據(jù)AD=BD,AE=EC,得出∠DBA=∠ECA,從而證出△ADB∽△AEC,得出=,最后根據(jù)=,即可求出的值;
(2)先過點E作EH⊥AC,延長交AB于G,連接DG,得出AH=CH,EH⊥AC,根據(jù)∠BCA=90°,證出GH∥BC,AG=BG,再根據(jù)AD=BD,得出DG⊥AB,最后根據(jù)AD⊥AC,AE⊥AB,得出GE∥AD,DG∥AE,
從而證出四邊形ADGE是平行四邊形,得出AF=GF,即可求出答案.
點評:此題考查了相似三角形的判定與性質(zhì),用到的知識點是等腰三角形的性質(zhì),平行四邊形的判定與性質(zhì)和解直角三角形,解題的關(guān)鍵是根據(jù)相似三角形的判定證出△ADB∽△AEC.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知矩形OABC,點P在邊OA上(不與端點重合),點Q在邊CO上(不與端點重合).
(1)如圖(1),若∠BPQ=90°,且△OPQ與△PAB和△QPB相似,請寫出表示這三個三角形相似的式子,并探究此時線段OQ、QB、BA之間的數(shù)量關(guān)系.
(2)若∠PQB=90°,且△OPQ與△PAB、△QPB都相似,如圖(2),請重新寫出表示這三個三角形相似的式子,并證明AB:OA=2
3
:3.
(3)在(1)中,若OA=8
2
,OC=8,OP=
2
CQ.以矩形OABC的兩邊OA、OC所在的直線分別為x軸和y軸,建立平面直角坐標系,如圖(3),若某拋物線頂點為P,點B在拋物線上.
①求此拋物線的解析式.
②過線段BP上一動點M(點M與點P、B不重合),作y軸的平行線交拋物線于點N,若記點M的橫坐標為m,試求線段MN的長L與m之間的函數(shù)關(guān)系式,畫出該函數(shù)的示意圖,并指出m取何值時,L有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•奉賢區(qū)一模)通過學習銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對記作canB,這時canB=
底邊
=
BC
AB
,容易知道一個角的大小與這個角的鄰對值也是一一對應的.根據(jù)上述角的鄰對的定義,解下列問題:
(1)can30°=
3
3
;
(2)如圖(2),已知在△ABC中,AB=AC,canB=
8
5
,S△ABC=24,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知矩形OABC,點P在邊OA上(不與端點重合),點Q在邊CO上(不與端點重合).
(1)如圖(1),若∠BPQ=90°,且△OPQ與△PAB和△QPB相似,請寫出表示這三個三角形相似的式子,并探究此時線段OQ、QB、BA之間的數(shù)量關(guān)系.
(2)若∠PQB=90°,且△OPQ與△PAB、△QPB都相似,如圖(2),請重新寫出表示這三個三角形相似的式子,并證明AB:OA=2數(shù)學公式:3.
(3)在(1)中,若OA=8數(shù)學公式,OC=8,OP=數(shù)學公式CQ.以矩形OABC的兩邊OA、OC所在的直線分別為x軸和y軸,建立平面直角坐標系,如圖(3),若某拋物線頂點為P,點B在拋物線上.
①求此拋物線的解析式.
②過線段BP上一動點M(點M與點P、B不重合),作y軸的平行線交拋物線于點N,若記點M的橫坐標為m,試求線段MN的長L與m之間的函數(shù)關(guān)系式,畫出該函數(shù)的示意圖,并指出m取何值時,L有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2012年安徽省中考數(shù)學模擬試卷(四)(解析版) 題型:解答題

如圖,已知矩形OABC,點P在邊OA上(不與端點重合),點Q在邊CO上(不與端點重合).
(1)如圖(1),若∠BPQ=90°,且△OPQ與△PAB和△QPB相似,請寫出表示這三個三角形相似的式子,并探究此時線段OQ、QB、BA之間的數(shù)量關(guān)系.
(2)若∠PQB=90°,且△OPQ與△PAB、△QPB都相似,如圖(2),請重新寫出表示這三個三角形相似的式子,并證明AB:OA=2:3.
(3)在(1)中,若OA=8,OC=8,OP=CQ.以矩形OABC的兩邊OA、OC所在的直線分別為x軸和y軸,建立平面直角坐標系,如圖(3),若某拋物線頂點為P,點B在拋物線上.
①求此拋物線的解析式.
②過線段BP上一動點M(點M與點P、B不重合),作y軸的平行線交拋物線于點N,若記點M的橫坐標為m,試求線段MN的長L與m之間的函數(shù)關(guān)系式,畫出該函數(shù)的示意圖,并指出m取何值時,L有最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

通過學習銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對記作canB,這時canB=數(shù)學公式,容易知道一個角的大小與這個角的鄰對值也是一一對應的.根據(jù)上述角的鄰對的定義,解下列問題:
(1)can30°=______;
(2)如圖(2),已知在△ABC中,AB=AC,canB=數(shù)學公式,S△ABC=24,求△ABC的周長.

查看答案和解析>>

同步練習冊答案