分析 (1)利用勾股定理求出OC,即可解答;
(2)過(guò)點(diǎn)B作x軸的垂線,通過(guò)構(gòu)建的全等三角形可確定點(diǎn)B的坐標(biāo);再利用待定系數(shù)法確定函數(shù)的解析式即可.
(3)已知B、C點(diǎn)的坐標(biāo),那么在求△BCD的面積時(shí),可以B、C的橫坐標(biāo)差的絕對(duì)值作為△BCD的一個(gè)高,過(guò)D作x軸的垂線交直線BC于M,那么可將DM當(dāng)作此時(shí)△BCD的底,可據(jù)此求出關(guān)于△BCD的面積的函數(shù)關(guān)系式,再由所得函數(shù)的性質(zhì)來(lái)求解.
解答 解:(1)∵點(diǎn)A的坐標(biāo)為(0,2),
∴OA=2,
在Rt△AOC中,CO=$\sqrt{A{C}^{2}-A{O}^{2}}=\sqrt{(\sqrt{5})^{2}-{2}^{2}}=1$,
∴點(diǎn)C的坐標(biāo)為(-1,0),
故答案為:(-1,0).
(2)如圖,過(guò)點(diǎn)B作BF⊥x軸,垂足為F,
則∠BFC=∠COA=90°
∵∠BCF+∠ACO=∠ACO+∠CAO=90°
∴∠BCF=∠CAO,
又∵BC=CA,
在△BCF和△CAO中,
$\left\{\begin{array}{l}{∠BCF=∠CA}\\{∠BFC=∠AOC}\\{BC=CA}\end{array}\right.$
∴△BCF≌△CAO,
∴BF=CO=1,F(xiàn)C=OA=2,
∴OF=1+2=3,
∴B(-3,1),
把B(-3,1)代入y=ax2+ax-2得:1=9a-3a-2,
∴a=$\frac{1}{2}$,
∴拋物線解析式為y=$\frac{1}{2}{x}^{2}$+$\frac{1}{2}$x-2.
(3)設(shè)直線BC的解析式為y=kx+b,將B(-3,1),C(-1,0)代入上式得
$\left\{\begin{array}{l}{-3k+b=1}\\{-k+b=0}\end{array}\right.$
解得:$\left\{\begin{array}{l}{k=-\frac{1}{2}}\\{b=-\frac{1}{2}}\end{array}\right.$,
所以直線BC的解析式為:y=-$\frac{1}{2}$x-$\frac{1}{2}$.
設(shè)點(diǎn)D的坐標(biāo)為(m,$\frac{1}{2}$m2+$\frac{1}{2}$m-2),過(guò)點(diǎn)D作DM⊥x軸交直線BC于點(diǎn)M
所以點(diǎn)M的坐標(biāo)為(m,-$\frac{1}{2}$m-$\frac{1}{2}$),
MD=${y}_{M}-{y}_{D}=-\frac{1}{2}{m}^{2}-m+\frac{3}{2}$.
再設(shè)三角形BCD的面積為S.
S=$\frac{1}{2}$MD(xC-xB)=$\frac{1}{2}$×(-$\frac{1}{2}{m}^{2}-m+\frac{3}{2}$)×2=-$\frac{1}{2}(m+1)^{2}$+2,
因?yàn)镾是m的二次函數(shù),且a=-$\frac{1}{2}$<0,
∴拋物線開(kāi)口向下,函數(shù)有最大值,
即當(dāng)m=-1時(shí)S有最大值2,此時(shí)點(diǎn)D的坐標(biāo)為(-1,-2).
點(diǎn)評(píng) 該題涉及的內(nèi)容較多,難度也較大,主要考查的知識(shí)點(diǎn)有:函數(shù)解析式的確定、特殊幾何圖形的判定和性質(zhì)以及圖形面積的解法等.在解題時(shí),一定要注意數(shù)形結(jié)合思想的合理應(yīng)用,通過(guò)部分輔助線往往可以題目變的簡(jiǎn)潔、明了.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 兩點(diǎn)確定一條直線 | |
B. | 過(guò)一點(diǎn)有且只有一條直線與已知直線平行 | |
C. | 同角(或等角)的余角相等 | |
D. | 兩點(diǎn)之間的所有連線中,線段最短 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com