【題目】如圖,平分,,于,于.
(1)若,求的度數;
(2)若,,.求四邊形的面積.
【答案】(1)∠CDA=120°;(2)9
【解析】
(1)根據角平分線的性質得到AE=AF,進而證明Rt△ABE≌Rt△ADF(HL),再根據全等三角形的性質即可得到∠CDA的度數;
(2)先證明Rt△ACE與Rt△ACF(HL),得到CE=CF,再得到CE的長度,將四邊形的面積分成△ACE與△ACD的面積計算即可.
解:(1)∵平分,于,于
∴AE=AF,∠AEB=∠AFD=90°,
在Rt△ABE與Rt△ADF中
,
∴Rt△ABE≌Rt△ADF(HL)
∴∠ABE=∠ADF=60°,
∴∠CDA=180°-∠ADF=120°,
故∠CDA=120°.
(2)由(1)可得Rt△ABE≌Rt△ADF
∴BE=DF,
又∵在Rt△ACE與Rt△ACF中
∴Rt△ACE與Rt△ACF(HL)
∴CE=CF
CE=CF=CD+DF=CD+BE=5,
又∵
∴AF=AE=2
∴四邊形AECD的面積=
故四邊形的面積為9
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=90°,將三角尺的直角頂點P落在∠AOB的平分線OC的任意一點上,使三角尺的兩條直角邊與∠AOB的兩邊分別相交于點E、F。證明:PE=PF。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】趙州橋是我國建筑史上的一大創(chuàng)舉,它距今約1400年,歷經無數次洪水沖擊和8次地震卻安然無恙.如圖,若橋跨度AB約為40米,主拱高CD約10米,
(1)如圖1,尺規(guī)作圖,找到橋弧所在圓的圓心O(保留作圖痕跡);
(2)如圖2,求橋弧AB所在圓的半徑R.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,直線l為BC的中垂線,射線m為∠ABC的角平分線,直線l與m相交于點P.若∠BAC=60°,∠ACP=24°,則∠ABP的度數是( )
A. 24° B. 30° C. 32° D. 36°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一架長2.5m的梯子AB斜靠在墻AC上,∠C=90°,此時,梯子的底端B離墻底C的距離BC為0.7m.
(1)求此時梯子的頂端A距地面的高度AC;
(2)如果梯子的頂端A下滑了0.9m,那么梯子的頂端B在水平方向上向右滑動了多遠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=14.5米,NF=0.2米.設太陽光線與水平地面的夾角為α,當α=56.3°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺階的NF這層上曬太陽.
(1)求樓房的高度約為多少米?
(2)過了一會兒,當α=45°時,問小貓能否還曬到太陽?請說明理由.(參考數據:sin56.3°≈0.83,cos56.3°≈0.55,tan56.3°≈1.5)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△ABD和△BCD都是等邊三角形,E、F分別是邊AD、CD上的點,且DE=CF,連接BE、EF、FB.
求證:(1)△ABE≌△DBF;
(2)△BEF是等邊三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在坡頂處的同一水平面上有一座古塔,數學興趣小組的同學在斜坡底處測得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測得該塔的塔頂的仰角為.求古塔的高度.(結果精確到米,參考數據: , , )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請在右邊的平面直角坐標系中描出以下三點:、、并回答如下問題:
在平面直角坐標系中畫出△ABC;
在平面直角坐標系中畫出△A′B′C′;使它與關于x軸對稱,并寫出點C′的坐標______;
判斷△ABC的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com