【題目】如圖,△ABC的三個頂點都在格點上,每個小方格邊長均為1個單位長度,建立如圖坐標系.

(1)請你作出△ABC關于點A成中心對稱的△AB1C1(其中B的對稱點是B1 , C的對稱點是C1),并寫出點B1、C1的坐標.
(2)依次連接BC1、C1B1、B1C.猜想四邊形BC1B1C是什么特殊四邊形?并說明理由.

【答案】
(1)

解:△AB1C1如圖所示,

B1的坐標(2,0),C1的坐標(5,﹣3);


(2)

解:四邊形BC1B1C是平行四邊形,

理由:由中心對稱的性質可知,BA=B1A,CA=C1A,

∴四邊形BC1B1C是平行四邊形.


【解析】(1)根據(jù)網格結構找出點B1、C1的位置,然后順次連接即可,再根據(jù)平面直角坐標系寫出點B1、C1的坐標即可;(2)根據(jù)軸對稱的性質解答.
【考點精析】解答此題的關鍵在于理解中心對稱及中心對稱圖形的相關知識,掌握如果把一個圖形繞著某一點旋轉180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD繞點A逆時針旋轉30°,得到平行四邊形AB′C′D′,點B′恰好落在BC邊土,B′C′CD交于點P,則∠B′PD的度數(shù)是(  )

A. 105° B. 120° C. 130° D. 135°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求代數(shù)式的值.

(1)(6a2﹣2ab)﹣2(3a2+4ab﹣b2)其中a=,b=﹣1.

(2)已知A=a2﹣2ab+b2,B=a2+2ab+b2

①求2A﹣B;

②如果2A﹣3B+C=0,那么C的表達式是什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個半徑為18 cm的圓,從中心挖去一個正方形,當挖去的正方形的邊長由小變大時,剩下部分的面積也隨之發(fā)生變化.

(1)若挖去的正方形邊長為x(cm),剩下部分的面積為y(cm2),yx之間的關系式是什么?

(2)當挖去的正方形的邊長由1 cm變化到9 cm,剩下部分的面積由____變化到____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(3,﹣3),點B的坐標為(﹣1,3),回答下列問題

(1)C的坐標是

(2)B關于原點的對稱點的坐標是

(3)ABC的面積為

(4)畫出△ABC關于x軸對稱的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科學技術的不斷進步,我國海上能源開發(fā)和利用已達到國際領先水平.下圖為我國在南海海域自主研制的海上能源開發(fā)的機器裝置AB,一直升飛機在離海平面l距離為150米的空中點P處,看到該機器頂部點A處的俯角為38°,看到露出海平面的機器部分點B處的俯角為65°,求這個機器裝置露出海平面部分AB的高度?(結果精確到0.1,參考數(shù)據(jù):sin65°=0.9063,sin38°=0.6157,tan38°=0.7813,tan65°=2.1445.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年9月,莉莉進入八中初一,在準備開學用品時,她決定購買若干個某款筆記本,甲、乙兩家文具店都有足夠數(shù)量的該款筆記本,這兩家文具店該款筆記本標價都是20/個.甲文具店的銷售方案是:購買該筆記本的數(shù)量不超過5個時,原價銷售;購買該筆記本超過5個時,從第6個開始按標價的八折出售:乙文具店的銷售方案是:不管購買多少個該款筆記本,一律按標價的九折出售.

(1)若設莉莉要購買xx>5)個該款筆記本,請用含x的代數(shù)式分別表示莉莉到甲文具店和乙文具店購買全部該款筆記本所需的費用;

(2)在(1)的條件下,莉莉購買多少個筆記本時,到乙文具店購買全部筆記本所需的費用與到甲文具店購買全部筆記本所需的費用相同?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】十一長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.

(1)若兩人同時出發(fā),小張車速為20千米,小李車速為15千米,經過多少小時能相遇?

(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時二人相遇,則小張的車速應為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)

(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;

(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.

查看答案和解析>>

同步練習冊答案