【題目】如圖,從坡上建筑物AB觀測坡底建筑物CD.從A點測得C點的俯角為45°,從B點測得D點的俯角為30°.已知AB的高度為10m,AB與CD的水平距離是OD=15m,則CD的高度為m(結(jié)果保留根號)

【答案】(
【解析】解:作CE⊥AO于點E,如右圖所示,

∵CE⊥AO,∠FAC=45°,OD=15m,
∴∠CAE=45°,CE=15m,
∴AE=15m,
∵AB=10m,
∴BE=5m,
∵∠BOD=90°,∠BDO=30°,OD=15m,
∴BO=15×tan30°=15× =5 m,
∴EO=BO﹣BE=5 ,
∴CD=EO=5 ,
所以答案是:( ).
【考點精析】解答此題的關(guān)鍵在于理解關(guān)于仰角俯角問題的相關(guān)知識,掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=6cm,BC=8cm,將矩形紙片折疊,使點C與點A重合,請在圖中畫出折痕,并求折痕的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B、F、C、E在同一條直線上,點A、D在直線BC的異側(cè),AB=DE,AC=DF,BF=EC.

(1)求證:△ABC≌△DEF;

(2)若∠BFD=150°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過原點的直線y=k1x和y=k2x與反比例函數(shù)y= 的圖象分別交于兩點A,C和B,D,連接AB,BC,CD,DA.

(1)四邊形ABCD一定是四邊形;(直接填寫結(jié)果)
(2)四邊形ABCD可能是矩形嗎?若可能,試求此時k1 , k2之間的關(guān)系式;若不能,說明理由;
(3)設(shè)P(x1 , y1),Q(x2 , y2)(x2>x1>0)是函數(shù)y= 圖象上的任意兩點,a= ,b= ,試判斷a,b的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)珠海環(huán)保城市建設(shè),我市某污水處理公司不斷改進污水處理設(shè)備,新設(shè)備每小時處理污水量是原系統(tǒng)的1.5倍,原來處理1200m3污水所用的時間比現(xiàn)在多用10小時.

(1)原來每小時處理污水量是多少m2?

(2)若用新設(shè)備處理污水960m3,需要多長時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,D是等邊三角形ABC外一點,DB=DC,∠BDC=120°,點E,F(xiàn)分別在AB,AC上.

(1)求證:AD是BC的垂直平分線.

(2)若ED平分∠BEF,求證:FD平分∠EFC.

(3)在(2)的條件下,求∠EDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l與⊙O相離,過點O作OA⊥l,垂足為A,OA交⊙O于點B,點C在直線l上,連接CB并延長交⊙O于點D,在直線l上另取一點P,使∠PCD=∠PDC.
(1)求證:PD是⊙O的切線;
(2)若AC=1,AB=2,PD=6,求⊙O的半徑r和△PCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD是△ABC的角平分線,DE⊥AB于點E,DF⊥AC于點F,BD=DG.

下列結(jié)論:(1)DE=DF;(2)∠B=∠DGF; (3)AB<AF+FG;(4)若△ABD和△ADG的面積分別是50和38,則△DFG的面積是8.其中一定正確的有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列例題

解方程:|x|+|2x1|5

解:①當x≥0.5時,原方程可化為:x+2x15,它的解是x2;

②當0≤x0.5時,原方程可化為:x2x+15,解之,得x=﹣4,

經(jīng)檢驗x不合題意,舍去.

③當x0時,原方程可化為:﹣x2x+15,它的解是x=﹣

所以原方程的解是x2x=﹣

1)根據(jù)上面的解題過程,寫出方程2|x1|x4的解.

2)根據(jù)上面的解題過程,解方程:2|x1||x|4

3)方程|x|2|x1|4是否有解.

查看答案和解析>>

同步練習(xí)冊答案