【題目】如圖,為測(cè)量學(xué)校旗桿AB的高度,小明從旗桿正前方6米處的點(diǎn)C出發(fā),沿坡度為i=1:的斜坡CD前進(jìn)2米到達(dá)點(diǎn)D,在點(diǎn)D處放置測(cè)角儀DE,測(cè)得旗桿頂部A的仰角為30°,量得測(cè)角儀DE的高為1.5米.A、B、C、D、E在同一平面內(nèi),且旗桿和測(cè)角儀都與地面垂直.
(1)求點(diǎn)D的鉛垂高度(結(jié)果保留根號(hào));
(2)求旗桿AB的高度(結(jié)果保留根號(hào)).
【答案】(1)米(2)(4+1.5)米
【解析】
(1)延長(zhǎng)ED交射線BC于點(diǎn)H.由題意得DH⊥BC.解直角三角形即可得到結(jié)論;
(2)過(guò)點(diǎn)E作EF⊥AB于F.得到∠AEF=30°.推出四邊形FBHE為矩形.根據(jù)矩形的性質(zhì)得到EF=BH=BC+CH=9.解直角三角形即可得到結(jié)論.
(1)延長(zhǎng)ED交射線BC于點(diǎn)H.
由題意得:DH⊥BC.
在Rt△CDH中,∠DHC=90°,tan∠DCH=i=1:,∴∠DCH=30°,∴CD=2DH.
∵CD=2,∴DH,CH=3.
答:點(diǎn)D的鉛垂高度是米.
(2)過(guò)點(diǎn)E作EF⊥AB于F.
由題意得:∠AEF即為點(diǎn)E觀察點(diǎn)A時(shí)的仰角,∴∠AEF=30°.
∵EF⊥AB,AB⊥BC,ED⊥BC,∴∠BFE=∠B=∠BHE=90°,∴四邊形FBHE為矩形,∴EF=BH=BC+CH=9,FB=EH=ED+DH=1.5.
在Rt△AEF中,∠AFE=90°,AF=EFtan∠AEF=9,∴AB=AF+FB=31.5.
答:旗桿AB的高度約為(41.5)米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列判斷正確的是( )
A. 甲乙兩組學(xué)生身高的平均數(shù)均為1.58,方差分別為S甲2=2.3,S乙2=1.8,則甲組學(xué)生的身高較整齊
B. 為了了解某縣七年級(jí)4000名學(xué)生的期中數(shù)學(xué)成績(jī),從中抽取100名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行調(diào)查,這個(gè)問(wèn)題中樣本容量為4000
C. 在“童心向黨,陽(yáng)光下成長(zhǎng)”合唱比賽中,30個(gè)參賽隊(duì)的決賽成績(jī)?nèi)缦卤恚簞t這30個(gè)參賽隊(duì)決賽成績(jī)的中位數(shù)是9.7
D. 有13名同學(xué)出生于2003年,那么在這個(gè)問(wèn)題中“至少有兩名同學(xué)出生在同一個(gè)月”屬于必然事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于軸對(duì)稱(chēng),點(diǎn)P是軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(,0),過(guò)點(diǎn)P作軸的垂線交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.
(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;
(2)點(diǎn)P在線段AB上運(yùn)動(dòng)的過(guò)程中,是否存在點(diǎn)Q,使得以B、Q、M為頂點(diǎn)的三角形與△BOD相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)已知點(diǎn)F(0,),點(diǎn)P在軸上運(yùn)動(dòng),試求當(dāng)為何值時(shí),以D、M、Q、F為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P為函數(shù)y=(x>0)圖象上一點(diǎn),過(guò)點(diǎn)P作x軸、y軸的平行線,分別與函數(shù)y=(x>0)的圖象交于點(diǎn)A、B,則△AOB的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是二次函數(shù)y=ax2+bx+c的圖象.下列結(jié)論:①二次三項(xiàng)式ax2+bx+c的最大值為4;②使y≤3成立的x的取值范圍是x≤-2;③一元二次方程ax2+bx+c=1的兩根之和為-1;④該拋物線的對(duì)稱(chēng)軸是直線x=-1;⑤4a-2b+c<0.其中正確的結(jié)論有______________.(把所有正確結(jié)論的序號(hào)都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)用尺規(guī)在邊BC上求作一點(diǎn)P,使PA=PB(不寫(xiě)作法,保留作圖痕跡);
(2)連接AP,若AP平分∠CAB,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩座建筑物的水平距離BC為78m,從甲的頂部A處測(cè)得乙的頂部D處的俯角為48°,測(cè)得底部C處的俯角為58°,求乙建筑物的高度CD.(結(jié)果取整數(shù),參考數(shù)據(jù):tan58°≈1.60,tan48°≈1.11).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家飲水機(jī)中原有水的溫度為20℃,通電開(kāi)機(jī)后,飲水機(jī)自動(dòng)開(kāi)始加熱[此過(guò)程中水溫y(℃)與開(kāi)機(jī)時(shí)間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時(shí)自動(dòng)停止加熱,隨后水溫開(kāi)始下降[此過(guò)程中水溫y(℃)與開(kāi)機(jī)時(shí)間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時(shí),飲水機(jī)又自動(dòng)開(kāi)始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)當(dāng)0≤x≤8時(shí),求水溫y(℃)與開(kāi)機(jī)時(shí)間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明在通電開(kāi)機(jī)后即外出散步,請(qǐng)你預(yù)測(cè)小明散步45分鐘回到家時(shí),飲水機(jī)內(nèi)的溫度約為多少℃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于的不等式組有且僅有三個(gè)整數(shù)解,且關(guān)于的分式方程的解為整數(shù),則符合條件的整數(shù)的個(gè)數(shù)是
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com